精英家教网 > 高中数学 > 题目详情
7.已知函数f(x)=$\sqrt{3}$sin(ωx-$\frac{π}{6}}$)+b(ω>0),且函数图象的对称中心到对称轴的最小距离为$\frac{π}{4}$,当x∈[0,$\frac{π}{4}}$]时,f(x)的最大值为1.
(I)求函数f(x)的解析式;
(Ⅱ)将函数f(x)的图象向右平移$\frac{π}{12}$个单位长度得到函数g(x)图象,若g(x)-3≤m≤g(x)+3在x∈[0,$\frac{π}{3}}$]上恒成立,求实数m的取值范围.

分析 (I)由题意可求T=π,利用周期公式可求ω的值,可得解析式f(x)=$\sqrt{3}$sin(2x-$\frac{π}{6}}$)+b,结合范围2x-$\frac{π}{6}}$∈[-$\frac{π}{6}}$,$\frac{π}{3}$],利用正弦函数的有界性解得b的值,从而可求函数f(x)的解析式.
(Ⅱ)利用函数y=Asin(ωx+φ)的图象变换可求g(x)=$\sqrt{3}$sin(2x-$\frac{π}{3}$)-$\frac{1}{2}$,结合范围2x-$\frac{π}{3}$∈[-$\frac{π}{3}$,$\frac{π}{3}$],可求范围g(x)=$\sqrt{3}$sin(2x-$\frac{π}{3}$)-$\frac{1}{2}$∈[-2,1],结合已知可求m的取值范围.

解答 解:(I)∵函数f(x)=$\sqrt{3}$sin(ωx-$\frac{π}{6}}$)+b(ω>0),且函数图象的对称中心到对称轴的最小距离为$\frac{π}{4}$,
∴$\frac{T}{4}$=$\frac{π}{4}$,可得:T=π,由$\frac{2π}{ω}$=π,可得:ω=2,
∴f(x)=$\sqrt{3}$sin(2x-$\frac{π}{6}}$)+b,
∵当x∈[0,$\frac{π}{4}}$]时,2x-$\frac{π}{6}}$∈[-$\frac{π}{6}}$,$\frac{π}{3}$],
∴由于y=sinx在[-$\frac{π}{6}}$,$\frac{π}{3}$]上单调递增,可得当2x-$\frac{π}{6}}$=$\frac{π}{3}$,即x=$\frac{π}{4}$时,函数f(x)取得最大值f($\frac{π}{4}$)=$\sqrt{3}$sin$\frac{π}{3}$+b,
∴$\sqrt{3}$sin$\frac{π}{3}$+b=1,解得b=-$\frac{1}{2}$,
∴f(x)=$\sqrt{3}$sin(2x-$\frac{π}{6}}$)-$\frac{1}{2}$…6分
(Ⅱ)将函数f(x)的图象向右平移$\frac{π}{12}$个单位长度得到函数解析式为:g(x)=$\sqrt{3}$sin[2(x-$\frac{π}{12}$)-$\frac{π}{6}}$]-$\frac{1}{2}$=$\sqrt{3}$sin(2x-$\frac{π}{3}$)-$\frac{1}{2}$,
∵当x∈[0,$\frac{π}{3}}$]时,可得:2x-$\frac{π}{3}$∈[-$\frac{π}{3}$,$\frac{π}{3}$],g(x)=$\sqrt{3}$sin(2x-$\frac{π}{3}$)-$\frac{1}{2}$∈[-2,1],
∴g(x)-3∈[-5,-2],g(x)+3∈[1,4],
∵g(x)-3≤m≤g(x)+3在x∈[0,$\frac{π}{3}}$]上恒成立,
∴m∈[-5,4].

点评 本题主要考查了函数y=Asin(ωx+φ)的图象变换规律,考查了三角函数恒等变换的应用,考查了正弦函数的图象和性质的应用,考查了转化思想和数形结合思想的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.已知f(x)=$\left\{\begin{array}{l}{cos\frac{πx}{2},x≤0}\\{f(x-1)+1,x>0}\end{array}\right.$,则f(2)=(  )
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.-3D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知f(x)是定义在R上的函数,满足f(x)=-f(-x),且当x<0时,f(x)=x•$\root{3}{-1-x}$,则f(9)=18.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设全集U=R,A={x|2x2-x=0},B={x|mx2-mx-1=0},其中x∈R,如果(∁UA)∩B=∅,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)=2sin(ωx+φ)+1(ω>0,|φ|≤$\frac{π}{2}}$),其图象与直线y=-1相邻两个交点的距离为π,若f(x)>1对?x∈(-$\frac{π}{12}$,$\frac{π}{3}}$)恒成立,则φ的取值范围是(  )
A.$[{\frac{π}{12},\frac{π}{6}}]$B.$[{\frac{π}{6},\frac{π}{2}}]$C.$[{\frac{π}{12},\frac{π}{3}}]$D.$[{\frac{π}{6},\frac{π}{3}}]$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设集合M={-1,0,1,2},N={x|1g(x+1)>0},则M∩N=(  )
A.{0,1}B.{0,1,2}C.{1,2}D.{-1,0,1}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)=Asin(ωx+φ)+b(A>0,ω>0)的图象如图所示,则f(x)的解析式为(  )
A.$f(x)=2sin({\frac{π}{6}x+\frac{π}{3}})+2$B.$f(x)=3sin({\frac{1}{3}x-\frac{π}{6}})+2$C.$f(x)=2sin({\frac{π}{6}x+\frac{π}{6}})+3$D.$f(x)=2sin({\frac{π}{6}x+\frac{π}{3}})+3$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设{an}是正数组成的等比数列,公比q=2,且a1a2a3…a33=233,则a3a6a9…a33=(  )
A.211B.215C.220D.222

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若a1,a2,a3,a4四个数成等比数列,则$|{\begin{array}{l}{a_1}&{a_2}\\{{a_3}}&{a_4}\end{array}}|$=0.

查看答案和解析>>

同步练习册答案