精英家教网 > 高中数学 > 题目详情
16.设{an}是正数组成的等比数列,公比q=2,且a1a2a3…a33=233,则a3a6a9…a33=(  )
A.211B.215C.220D.222

分析 由等比数列的通项公式和已知数据可得a111,a3a6a9…a33=a1112187,代入计算可得.

解答 解:∵正数组成的等比数列,公比q=2,且a1a2a3…a33=233
∴a133•q1+2+3+…+32=a133q435=a1332528=233
∴a133=2-495,∴a111=2-165
∴a3a6a9…a33=a111•q2+5+8+…+32=a1112187
=2-165•2187=222
故选:D

点评 本题考查了等比数列的通项公式,考查了等比数列的性质,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.已知函数f(x)=|x|-x+1,则不等式f(1-x2)>f(1-2x)的解集为{x|x>2或x<-1}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=$\sqrt{3}$sin(ωx-$\frac{π}{6}}$)+b(ω>0),且函数图象的对称中心到对称轴的最小距离为$\frac{π}{4}$,当x∈[0,$\frac{π}{4}}$]时,f(x)的最大值为1.
(I)求函数f(x)的解析式;
(Ⅱ)将函数f(x)的图象向右平移$\frac{π}{12}$个单位长度得到函数g(x)图象,若g(x)-3≤m≤g(x)+3在x∈[0,$\frac{π}{3}}$]上恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知x,y满足$\left\{\begin{array}{l}y≥2x\\ x+y≤3\\ x≥a\end{array}$且z=2x+y的最大值是其最小值的2倍,则a=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=xlnx-2x,g(x)=-ax2+ax-2,(a>1).
(I)求函数f(x)的单调区间及最小值;
(II)证明:f(x)≥g(x)在x∈[1,+∞)上恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知等差数列{an}的前n项和为Sn,且a2=3,S5=25.
(1)求数列{an}的通项公式an
(2)设数列{$\frac{1}{{{a_n}{a_{n+1}}}}$}的前n项和为Tn,是否存在k∈N*,使得等式2-2Tk=$\frac{1}{3^k}$成立,若存在,求出k的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知向量$\overrightarrow{m}$=(cosα-$\frac{{\sqrt{2}}}{3}$,-1),$\overrightarrow{n}$=(sinα,1),$\overrightarrow{m}$与$\overrightarrow{n}$为共线向量,且α∈[-$\frac{π}{2}$,0].
(1)求sinα+cosα的值;             
(2)求$\frac{sin2α}{sinα-cosα}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知等差数列{an}中,a1=1,且a2+2,a3,a4-2成等比数列.
(1)求数列{an}的通项公式;
(2)若bn=$\frac{1}{{a}_{n}•{a}_{n+1}}$,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.命题“?x∈R,ax2-2ax+3>0恒成立”是真命题,则实数a的取值范围是0≤a<3.

查看答案和解析>>

同步练习册答案