分析 (1)由a2+2,a3,a4-2成等比数列,${a}_{3}^{2}$=(a2+2)(a4-2),根据等差数列的通项公式求得d2-4d+4=0,即可求得d=2,数列{an}的通项公式;
(2)bn=$\frac{1}{{a}_{n}•{a}_{n+1}}$=$\frac{1}{(2n-1)(2n+1)}$=$\frac{1}{2}$($\frac{1}{2n-1}$-$\frac{1}{2n+1}$),利用“裂项法”即可求得数列{bn}的前n项和Sn.
解答 解:(1)由a2+2,a3,a4-2成等比数列,
∴${a}_{3}^{2}$=(a2+2)(a4-2),
(1+2d)2=(3+d)(-1+3d),
d2-4d+4=0,解得:d=2,
∴an=1+2(n-1)=2n-1,
数列{an}的通项公式an=2n-1;
(2)bn=$\frac{1}{{a}_{n}•{a}_{n+1}}$=$\frac{1}{(2n-1)(2n+1)}$=$\frac{1}{2}$($\frac{1}{2n-1}$-$\frac{1}{2n+1}$),
Sn=$\frac{1}{2}$[(1-$\frac{1}{3}$)+($\frac{1}{3}$-$\frac{1}{5}$)+…+($\frac{1}{2n-1}$-$\frac{1}{2n+1}$)],
=$\frac{1}{2}$(1-$\frac{1}{2n+1}$),
=$\frac{n}{2n+1}$,
数列{bn}的前n项和Sn,Sn=$\frac{n}{2n+1}$.
点评 本题考查等比数列性质,等差数列通项,考查“裂项法”求数列的前n项和,考查计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 211 | B. | 215 | C. | 220 | D. | 222 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (2,+∞) | B. | $(-∞,\frac{1}{2})$ | C. | $(\frac{1}{2},2)$ | D. | $(0,\frac{1}{2})$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [0,3] | B. | [$\frac{1}{2}$,3] | C. | [$\frac{1}{2}$,4] | D. | [0,4] |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com