精英家教网 > 高中数学 > 题目详情
3.已知函数f(x)=xln(x+$\sqrt{2a+{x}^{2}}$(a>0)为偶函数.
(1)求a的值;
(2)求g(x)=ax2+2x+1在区间[-6,3]上的值域.

分析 (1)根据函数的奇偶性,求出a的值即可;
(2)求出g(x)的表达式,根据函数的单调性求出g(x)在值域即可.

解答 解:(1)由题意知f(x)是偶函数,
∵a>0,∴$\sqrt{2a{+x}^{2}}$>$\sqrt{{x}^{2}}$=|x|≥-x,
所以函数f(x)定义域为R,
则有:f(1)=f(-1),
 即ln(1+$\sqrt{2a+1}$)=-ln(-1+$\sqrt{2a+1}$),
∴1+$\sqrt{2a+1}$=$\frac{1}{\sqrt{2a+1}-1}$,
 即2a+1-1=1,a=$\frac{1}{2}$;
(2)g(x)=$\frac{1}{2}$(x+2)2-1,
开口向上,对称轴为x=-2,
∴g(x)关于x在[-6,-2]上递减,则g(-2)≤g(x)≤g(-6),
g(x) 关于x在(-2,3]上递增,则g(-2)<g(x)≤g(3),
又g(-2)=-1,g(3)=$\frac{23}{2}$,g(-6)=7,
g(x)的值域为[-1,$\frac{23}{2}$].

点评 本题考查了函数的单调性、最值问题,考查二次函数的性质,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=2ax-2,g(x)=a(x-2a)(x+2-a),a∈R且a≠0.
(Ⅰ)若{x|f(x)g(x)=0}={1,2},求实数a的值;
(Ⅱ)若{x|f(x)<0或g(x)<0}=R,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.在平面直角坐标系xoy中,圆M:(x-a)2+(y+a-3)2=1(a>0),点N为圆M上任意一点.若以N为圆心,ON为半径的圆与圆M至多有一个公共点,则a的取值范围为a≥3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=$\frac{{{2^x}-a}}{{{2^x}+1}}$,(a>0).
(1)当a=2时,证明函数f(x)不是奇函数;
(2)判断函数f(x)的单调性,并利用函数单调性的定义给出证明;
(3)若f(x)是奇函数,且f(x)-x2+4x≥m在x∈[-2,2]时恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知f(x)是定义在R上的函数,满足f(x)=-f(-x),且当x<0时,f(x)=x•$\root{3}{-1-x}$,则f(9)=18.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=log4(4x+1)+2kx(k∈R)是偶函数.
(1)求k的值;
(2)若方程f(x)=m有解,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设全集U=R,A={x|2x2-x=0},B={x|mx2-mx-1=0},其中x∈R,如果(∁UA)∩B=∅,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设集合M={-1,0,1,2},N={x|1g(x+1)>0},则M∩N=(  )
A.{0,1}B.{0,1,2}C.{1,2}D.{-1,0,1}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知方程x2+ax+b=0的一根在(0,1)上,另一根在(1,2)上,则$\frac{2-b}{3-a}$的取值范围是(  )
A.(2,+∞)B.$(-∞,\frac{1}{2})$C.$(\frac{1}{2},2)$D.$(0,\frac{1}{2})$

查看答案和解析>>

同步练习册答案