分析 (1)利用函数是偶函数,利用定义推出方程求解即可.
(2)通过方程有解,求出函数的最值,即可推出m的范围.
解答 (本小题满分12分)
解:(1)由函数f(x)是偶函数可知,f(-x)=f(x),
∴log4(4x+1)+2kx=log4(4-x+1)-2kx,即log4$\frac{4x+1}{4-x+1}$=-4kx,
∴log44x=-4kx,∴x=-4kx,即(1+4k)x=0,对一切x∈R恒成立,
∴k=-$\frac{1}{4}$.…(6分)
(2)由m=f(x)=log4(4x+1)-$\frac{1}{2}$x=log4$\frac{4x+1}{2x}$=log4(2x+$\frac{1}{2x}$),
∵2x>0,∴2x+$\frac{1}{2x}$≥2,∴m≥log42=$\frac{1}{2}$.
故要使方程f(x)=m有解,
m的取值范围为[$\frac{1}{2}$,+∞).…(12分)
点评 本题考查函数的奇偶性的应用,函数的最值的求法,考查计算能力.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $-\frac{1}{2}$ | B. | $-\frac{{\sqrt{3}}}{2}$ | C. | $\frac{1}{2}$ | D. | $\frac{{\sqrt{3}}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $-\frac{1}{2}$ | B. | $\frac{1}{2}$ | C. | $\sqrt{3}$ | D. | $\frac{{\sqrt{3}}}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com