精英家教网 > 高中数学 > 题目详情
8.已知函数f(x)=log4(4x+1)+2kx(k∈R)是偶函数.
(1)求k的值;
(2)若方程f(x)=m有解,求m的取值范围.

分析 (1)利用函数是偶函数,利用定义推出方程求解即可.
(2)通过方程有解,求出函数的最值,即可推出m的范围.

解答 (本小题满分12分)
解:(1)由函数f(x)是偶函数可知,f(-x)=f(x),
∴log4(4x+1)+2kx=log4(4-x+1)-2kx,即log4$\frac{4x+1}{4-x+1}$=-4kx,
∴log44x=-4kx,∴x=-4kx,即(1+4k)x=0,对一切x∈R恒成立,
∴k=-$\frac{1}{4}$.…(6分)
(2)由m=f(x)=log4(4x+1)-$\frac{1}{2}$x=log4$\frac{4x+1}{2x}$=log4(2x+$\frac{1}{2x}$),
∵2x>0,∴2x+$\frac{1}{2x}$≥2,∴m≥log42=$\frac{1}{2}$.
故要使方程f(x)=m有解,
m的取值范围为[$\frac{1}{2}$,+∞).…(12分)

点评 本题考查函数的奇偶性的应用,函数的最值的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知命题p:?x∈[1,2],x2-a≥0,命题q:?x0∈R,使得x02+(a-1)x0-1<0,若p∨q为真,p∧q为假,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.设a=0.32,b=20.5,c=log24,则实数a,b,c的大小关系是a<b<c.(按从小到大的顺序用不等号连接)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知A={a,b,c},B={a,b},则下列关系不正确的是(  )
A.A∩B=BB.AB⊆BC.A∪B⊆AD.B?A

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=xln(x+$\sqrt{2a+{x}^{2}}$(a>0)为偶函数.
(1)求a的值;
(2)求g(x)=ax2+2x+1在区间[-6,3]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.设函数f(x+1)的定义域为[-1,0],则函数f($\sqrt{x}$-2)的定义域为[4,9].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若点(sin$\frac{2π}{3}$,cos$\frac{2π}{3}}$)在角α的终边上,则sinα的值为(  )
A.$-\frac{1}{2}$B.$-\frac{{\sqrt{3}}}{2}$C.$\frac{1}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数f(x)=$\left\{\begin{array}{l}{({\frac{1}{3}})^x}{,_{\;}}_{\;}x≤1\\{log_{\frac{1}{2}}}x{,_{\;}}x>1\end{array}\right.$,则f(f(${\sqrt{2}}$))=(  )
A.$-\frac{1}{2}$B.$\frac{1}{2}$C.$\sqrt{3}$D.$\frac{{\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.△ABC中,角A,B,C的对边分别为a,b,c,且cosC=$\frac{2a-c}{2b}$.
(1)求角B的大小;
(2)若BD为AC边上的中线,cosA=$\frac{1}{7}$,BD=$\frac{{\sqrt{129}}}{2}$,求△ABC的面积.

查看答案和解析>>

同步练习册答案