精英家教网 > 高中数学 > 题目详情
14.在平面直角坐标系xoy中,圆M:(x-a)2+(y+a-3)2=1(a>0),点N为圆M上任意一点.若以N为圆心,ON为半径的圆与圆M至多有一个公共点,则a的取值范围为a≥3.

分析 求出圆的圆心与半径,利用ON与已知圆的直径列出关系式求解即可.

解答 解:圆M:(x-a)2+(y+a-3)2=1(a>0),圆的圆心(a,3-a),半径为1,
点N为圆M上任意一点,若以N为圆心,ON为半径的圆与圆M至多有一个公共点,
|ON|≥2,
|ON|的最小值为:|OM|-1,
可得$\sqrt{{a}^{2}+(a-3)^{2}}$-1≥2,
解得a≥3或a≤0(舍去).
故答案为:a≥3.

点评 本题考查圆的方程的综合应用,考查转化思想以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.函数f(x)=kx+b(k>0),若x∈[0,1],y∈[-1,1],则函数y=f(x)的解析式是(  )
A.y=2x-1B.$y=\frac{1}{2}(x-1)$C.y=2x-1或y=-2x+1D.y=-2x-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.θ为锐角,sin(θ-$\frac{π}{4}$)=$\frac{\sqrt{2}}{10}$,则tanθ+$\frac{1}{tanθ}$=(  )
A.$\frac{25}{12}$B.$\frac{7}{24}$C.$\frac{24}{7}$D.$\frac{12}{25}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设命题p:实数x满足:x2-4ax+3a2<0,其中a>0,命题q:实数x满足x=($\frac{1}{2}$)m-1,其中m∈(1,2).
(1)若a=$\frac{1}{4}$,且p∧q为真,求实数x的取值范围;
(2)¬p是¬q的充分不必要条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.圆心为(3,0),而且与y轴相切的圆的标准方程为(x-3)2+y2=9.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.设a=0.32,b=20.5,c=log24,则实数a,b,c的大小关系是a<b<c.(按从小到大的顺序用不等号连接)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数f(x)=|x|-x+1,则不等式f(1-x2)>f(1-2x)的解集为{x|x>2或x<-1}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=xln(x+$\sqrt{2a+{x}^{2}}$(a>0)为偶函数.
(1)求a的值;
(2)求g(x)=ax2+2x+1在区间[-6,3]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知x,y满足$\left\{\begin{array}{l}y≥2x\\ x+y≤3\\ x≥a\end{array}$且z=2x+y的最大值是其最小值的2倍,则a=$\frac{1}{2}$.

查看答案和解析>>

同步练习册答案