精英家教网 > 高中数学 > 题目详情
在直三棱柱ABC-ABC中,∠ABC=90°,AB=BC=1.
(1)求异面直线B1C1与AC所成的角的大小;
(2)若A1C与平面ABCS所成角为45°,求三棱锥A1-ABC的体积.
分析:(1)将B1C1平移到BC,根据异面直线所成角的定义可知∠ACB为异面直线B1C1与AC所成角(或它的补角),在Rt△ACB中求出此角即可;
(2)根据AA1⊥平面ABC,则AA1就是几何体的高,再求出底面积,最后根据三棱锥A1-ABC的体积公式V=
1
3
S△ABC×AA1求解.
解答:解:(1)∵BC∥B1C1
∴∠ACB为异面直线B1C1与AC所成角(或它的补角)
∵∠ABC=90°,AB=BC=1,
∴∠ACB=45°,
∴异面直线B1C1与AC所成角为45°.
(2)∵AA1⊥平面ABC,
∠ACA1是A1C与平面ABC所成的角,∠ACA=45°.
∵∠ABC=90°,AB=BC=1,AC=
2

∴AA1=
2

∴三棱锥A1-ABC的体积V=
1
3
S△ABC×AA1=
2
6
点评:本小题主要考查异面直线所成的角,以及空间几何体的体积,考查空间想象能力、运算能力和推理论证能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在直三棱柱ABC-A′B′C′中,已知AA′=4,AC=BC=2,∠ACB=90°,D是AB的中点.
(Ⅰ)求证:CD⊥AB′;
(Ⅱ)求二面角A′-AB′-C的大小;
(Ⅲ)求直线B′D与平面AB′C所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•泸州一模)如图,在直三棱柱ABC-A′B′C′中,AB=BC=CA=a,AA′=
2
a
,则AB′与侧面AC′所成角的大小为
30°
30°

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在直三棱柱ABC-A′B′C′中,AA′=AB=BC=1,∠ABC=90°.棱A′C′上有两个动点E,F,且EF=a (a为常数).
(Ⅰ)在平面ABC内确定一条直线,使该直线与直线CE垂直;
(Ⅱ)判断三棱锥B-CEF的体积是否为定值.若是定值,求出这个三棱锥的体积;若不是定值,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在直三棱柱ABC-A′B′C′中,∠BAC=90°,AB=BB′=1,直线B′C与平面ABC成30°角.
(1)求证:A′B⊥面AB′C;
(2)求二面角B-B′C-A的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在直三棱柱ABC-A′B′C′中,点D是BC的中点,∠ACB=90°,AC=BC=1,AA′=2,
(1)欲过点A′作一截面与平面AC'D平行,问应当怎样画线,写出作法,并说明理由;
(2)求异面直线BA′与 C′D所成角的余弦值.

查看答案和解析>>

同步练习册答案