精英家教网 > 高中数学 > 题目详情

【题目】在如图所示的几何体中,平面平面,四边形和四边形都是正方形,且边长为的中点.

(1)求证:直线平面

(2)求二面角的大小.

【答案】(1)见解析;(2).

【解析】试题分析:(1)连结,根据平行四边形性质得中点,再根据三角形中位线性质得,最后根据线面平行判定定理得结论,(2)根据条件建立空间直角坐标系,设立各点坐标,利用方程组解各面法向量,根据向量数量积求夹角,最后根据二面角与向量夹角相等或互补关系求二面角.

试题解析:(1)∵且

交于点交于点

∴平面平面,∴几何体是三棱柱

又平面平面,∴平面,故几何体是直三棱柱

(1)四边形和四边形都是正方形,所以,所以四边形为矩形;于是,连结,连结中点,又的中点,故是三角形D的中位线,,注意到在平面外,在平面内,∴直线平面

(2)由于平面 平面,∴平面,所以.于是两两垂直.以所在直线分别为轴建立空间直角坐标系,因正方形边长为,且中点,所以

于是,设平面的法向量为

,解之得,同理可得平面的法向量,∴

记二面角的大小为,依题意知,为锐角,

即求二面角的大小为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在△ABC中,∠B=30°,AC= ,D是边AB上一点.
(1)求△ABC面积的最大值;
(2)若CD=2,△ACD的面积为2,∠ACD为锐角,求BC的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】元旦晚会期间,高三二班的学生准备了6 个参赛节目,其中有 2 个舞蹈节目,2 个小品节目,2个歌曲节目,要求歌曲节目一定排在首尾,另外2个舞蹈节目一定要排在一起,则这 6 个节目的不同编排种数为

A. 48 B. 36 C. 24 D. 12

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,椭圆)和圆,已知圆将椭圆的长轴三等分,椭圆右焦点到右准线的距离为,椭圆的下顶点为,过坐标原点且与坐标轴不重合的任意直线与圆相交于点

(1)求椭圆的方程;

(2)若直线分别与椭圆相交于另一个交点为点.

①求证:直线经过一定点;

②试问:是否存在以为圆心,为半径的圆,使得直线和直线都与圆相交?若存在,请求出实数的范围;若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着国家二孩政策的全面放开,为了调查一线城市和非一线城市的二孩生育意愿,某机构用简单随机抽样方法从不同地区调查了100位育龄妇女,结果如下表.

非一线城市

一线城市

总计

愿生

45

20

65

不愿生

13

22

35

总计

58

42

100

附表:

算得,

参照附表,得到的正确结论是

A. 在犯错误的概率不超过0.1%的前提下,认为“生育意愿与城市级别有关”

B. 在犯错误的概率不超过0.1%的前提下,认为“生育意愿与城市级别无关”

C. 有99%以上的把握认为“生育意愿与城市级别有关”

D. 有99%以上的把握认为“生育意愿与城市级别无关”

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为椭圆的右焦点,点上,且轴.

(1)求的方程

(2)过的直线两点,交直线于点.证明:直线的斜率成等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数据a1,a2,…,an的平均数为a,方差为s2,则数据2a1,2a2,…,2an的平均数和方差分别为(  )

A. a,s2 B. 2a,s2

C. 2a,2s2 D. 2a,4s2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】△ABC的内角A,B,C的对边分别为a,b,c,已知sinA+ cosA=0,a=2 ,b=2.
(Ⅰ)求c;
(Ⅱ)设D为BC边上一点,且AD⊥AC,求△ABD的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在△ABC中,∠C=60°,D是BC上一点,AB=31,BD=20,AD=21.
(1)求cos∠B的值;
(2)求sin∠BAC的值和边BC的长.

查看答案和解析>>

同步练习册答案