精英家教网 > 高中数学 > 题目详情
12.已知集合A={x|-1<x<2},$B=\left\{{x|y={x^{-\frac{1}{2}}}}\right\}$,则A∩B=(  )
A.(0,+∞)B.(-1,2)C.(0,2)D.(2,+∞)

分析 先求出集合B,再根据交集的定义计算即可.

解答 解:集合A={x|-1<x<2}=(-1,2),$B=\left\{{x|y={x^{-\frac{1}{2}}}}\right\}$=(0,+∞),
则A∩B=(0,2),
故选:C

点评 本题考查了交集的运算,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知抛物线E:y2=4x的焦点F为椭圆M:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)右焦点,两曲线在第一象限内交于点P,且|PF|=$\frac{5}{3}$
(Ⅰ)求椭圆M的方程;
(Ⅱ)过点F且互相垂直的两条直线l1与l2,若l1与椭圆M交于A、B两点,l2与抛物线E交于C、D两点,且|CD|=4|AB|,求直线l1的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在直角坐标系xoy中,直线l过点M(3,4),其倾斜角为45°,以原点为极点,以x正半轴为极轴建立极坐标,并使得它与直角坐标系xoy有相同的长度单位,圆C的极坐标方程为ρ=4sinθ.
(Ⅰ)求直线l的参数方程和圆C的普通方程;
(Ⅱ)设圆C与直线l交于点A、B,求|MA|•|MB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知三棱锥A-BCD中,AB=AC=BC=2,BD=CD=$\sqrt{2}$,点E是BC的中点,点A在平面BCD上的射影恰好为DE的中点,则该三棱锥外接球的表面积为$\frac{60}{11}π$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在△ABC中,角A,B,C的对边分别为a,b,c,且acosB+bcosA=2ccosC.
(Ⅰ)求角C;
(Ⅱ)若c=2$\sqrt{3}$,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,在△ABC中,M是边BC上的点,且tan∠BAM=$\frac{1}{3}$,tan∠AMC=-$\frac{1}{2}$.
(Ⅰ)求角B的大小;
(Ⅱ)设α+β=B(α>0,β>0),求$\sqrt{2}$sinα-sinβ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.给出下列四个命题:
①回归直线$\widehaty=b\widehatx+a$恒过样本中心点$(\overline x,\overline y)$;
②“x=6”是“x2-5x-6=0”的必要不充分条件;
③“?x0∈R,使得x02+2x0+3<0”的否定是“对?x∈R,均有x2+2x+3>0”;
④“命题p∨q”为真命题,则“命题?p∧?q”也是真命题.
其中真命题的个数是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若关于x,y的方程组$\left\{\begin{array}{l}ax+y=1\\ x+y=2\end{array}\right.$无解,则a=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.一个不透明的袋子中装有大小相同的12个黑球,4个白球,每次有放回的任意摸取一个球,共摸取3次,若用X表示取到白球的次数,则X的数学期望E(X)与方差D(X)分别为$\frac{3}{4}$,$\frac{9}{16}$.

查看答案和解析>>

同步练习册答案