【题目】如图,在圆锥PO中,已知
,圆O的直径
,C是弧AB的中点,D为AC的中点.
![]()
(1)求异面直线PD和BC所成的角的正切值;
(2)求直线OC和平面PAC所成角的正弦值.
科目:高中数学 来源: 题型:
【题目】已知椭圆
、抛物线
的焦点均在
轴上,
的中心和
的顶点均为原点
,且椭圆
经过点
,
,抛物线
过点
.
(Ⅰ)求
、
的标准方程;
(Ⅱ)请问是否存在直线
满足条件:
①过
的焦点
;②与
交不同两点
、
且满足
.
若存在,求出直线
的方程;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】过抛物线L:x2=2py(p>0)的焦点F且斜率为
的直线与抛物线L在第一象限的交点为P,且|PF|=5. ![]()
(1)求抛物线L的方程;
(2)与圆x2+(y+1)2=1相切的直线l:y=kx+t交抛物线L于不同的两点M、N,若抛物线上一点C满足
=λ(
+
)(λ>0),求λ的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义在(0,+∞)上的函数f(x)满足f(2x)=x2-2x.
(Ⅰ)求函数y=f(x)的解析式;
(Ⅱ)若关于x的方程f(x)=
在(1,4)上有实根,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某企业通过调查问卷(满分50分)的形式对本企业900名员工的工作满意度进行调查,并随机抽取了其中30名员工(其中16名女员工,14名男员工)的得分,如下表:
女 | 47 36 32 48 34 44 43 47 46 41 43 42 50 43 35 49 |
男 | 37 35 34 43 46 36 38 40 39 32 48 33 40 34 |
(Ⅰ)现求得这30名员工的平均得分为40.5分,若规定大于平均得分为“满意”,否则为“不满意”,请完成下列表格:
“满意”的人数 | “不满意”的人数 | 合计 | |
女 | 16 | ||
男 | 14 | ||
合计 | 30 |
(Ⅱ)根据上述表中数据,利用独立性检验的方法判断,能否在犯错误的概率不超过1%的前提下,认为该企业员工“性别”与“工作是否满意”有关?
参考数据:
| 0.10 | 0.050 | 0.025 | 0.010 | 0.001 |
| 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
参考公式:![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知二次函数f(x)对任意实数x满足f(x+2)=f(-x+2),又f(0)=3,f(2)=1.
(1)求函数f(x)的解析式;
(2)若f(x)在[0,m]上的最大值为3,最小值为1,求m的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com