精英家教网 > 高中数学 > 题目详情
(1)求证:3(1+a2+a4)≥(1+a+a22
(2)已知:a2+b2=1,m2+n2=2,证明:-
2
≤am+bn≤
2
考点:不等式的证明
专题:证明题,不等式的解法及应用
分析:(1)运用作差法,由三个数和的平方公式,运用因式分解方法,即可得证;
(2)运用三角换元,可令a=cosα,b=sinα,m=
2
cosβ,n=
2
sinβ,α,β∈R,运用两角和的余弦公式和余弦函数的值域,即可得证.
解答: 证明:(1)∵3(1+a2+a4)-(1+a+a2)2
=3+3a2+3a4-(1+a2+a4+2a+2a3+2a2
=2a4+2-2a-2a3
=2(a4-a3)+2(1-a)
=2(a-1)(a3-1)
=2(a-1)2(a2+a+1)=2(a-1)2[(a+
1
2
2+
3
4
]≥0,
∴3(1+a2+a4)≥(1+a+a22
(2)∵a2+b2=1,m2+n2=2,
∴可令a=cosα,b=sinα,m=
2
cosβ,n=
2
sinβ,α,β∈R,
∴am+bn=
2
cosαcosβ+
2
sinαsinβ
=
2
(cosαcosβ+sinαsinβ)=
2
cos(α-β),
∵-1≤cos(α-β)≤1,
∴-
2
≤am+bn≤
2
点评:本题考查不等式的证明方法:作差法和换元法,考查推理能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)满足f(2x+1)=3x+2,则f(x)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

某公司生产某种产品投入固定资本20万元,以后生产x万件产品需要再投入可变资本a(x2-1)万元,收入资金为R(x)=160x-3.8x2-1480.2万元,已知当生产10万件产品时,投入生产资金可达到39.8万元.
(1)判断生产每件产品所需可变资本函数的单调性;
(2)求计划生产多少件产品时,利润最大?最大是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在长方体ABCD-A1B1C1D1中,AD=AA1=1,AB=
3
,点E在棱AB上.
(1)求异面直线D1C与A1D所成的角的余弦值;
(2)当二面角D1-EC-D的大小为45°时,求点B到面D1EC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

“B=60°”是“△ABC三个内角成等差数列”的(  )
A、充分非必要条件
B、充要条件
C、必要非充分条件
D、既不充分又非必要条件.

查看答案和解析>>

科目:高中数学 来源: 题型:

若|
a
|=|
b
|=|
a
b
|,则
b
a
+
b
的夹角为(  )
A、30°B、60°
C、150°D、120°

查看答案和解析>>

科目:高中数学 来源: 题型:

已知空间三点A(0,2,3)B(-2,1,6)C(1,-1,5)
(1)求以AB,AC为边的平行四行形面积.
(2)已知
a
AB
=0,
a
AC
=0且|
a
|=
3
,求
a

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直角梯形ABCD中,AD∥BC,∠ADC=90°,AD=3,BC=2,P是腰DC上的动点,则|
PA
+3
PB
|的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=sinα+cosα的图象的一个对称中心是(  )
A、(
π
4
2
B、(
4
,-
2
C、(-
π
4
,0)
D、(
π
2
,1)

查看答案和解析>>

同步练习册答案