精英家教网 > 高中数学 > 题目详情
已知函数f(x)=ax-
1
x
,且f(-2)=-
3
2

(1)求f(x)的解析式;
(2)判断函数f(x)在(0,+∞)上的单调性并加以证明;
(3)求函数f(x)在[
1
2
,2]
上的最大值和最小值.
考点:函数的最值及其几何意义,函数解析式的求解及常用方法,函数单调性的判断与证明
专题:综合题,函数的性质及应用
分析:(1)利用函数f(x)=ax-
1
x
,且f(-2)=-
3
2
,求出a,即可求f(x)的解析式;
(2)f(x)在(0,+∞)上是增函数,利用单调性的定义加以证明;
(3)f(x)在[
1
2
,2]
上是增函数,可求函数f(x)在[
1
2
,2]
上的最大值和最小值.
解答: 解:(1)∵f(-2)=-
3
2

-2a+
1
2
=-
3
2
…(1分)
得a=1,∴f(x)=x-
1
x
…(3分)
(2)f(x)在(0,+∞)上是增函数
设x1,x2∈(0,+∞),且x1<x2…(4分)
f(x1)-f(x2)=x1-
1
x1
-x2+
1
x2
=
(x1-x2)(x1x2+1)
x1x2
…(7分)
∵0<x1<x2
∴x1-x2<0,x1x2>0,x1x2+1>0…(8分)
∴f(x1)-f(x2)<0,即f(x1)<f(x2
∴f(x)在(0,+∞)上是增函数.          …(9分)
(3)由(2)可知f(x)在(0,+∞)上是增函数,
∴f(x)在[
1
2
,2]
上是增函数…(10分)
f(x)max=f(2)=
3
2
f(x)min=f(
1
2
)=-
3
2
…(12分)
点评:本题考查函数的解析式,考查函数的单调性的判断与证明,考查函数的最值,确定函数的单调性是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)对任意x,y∈R,f(x+y)=f(x)+f(y),且当x>0时,f(x)>0
(1)求f(0)的值;
(2)判断函数f(x)的奇偶性
(3)若已知f(1)=2,试判断函数f(x)的单调性,并求满足f(2-a)=6的实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

云南省2014年全省高中男生身高统计调查数据显示:全省100000名男生的身高服从正态分布N(107.5,16).现从我校高三年级男生中随机抽取50名测量身高,测量发现被测学生身高全部介于157.5cm和187.5cm之间,将测量结果按如下方式分成6组:第一组[157.5,162.5],第二组[162.5,167.5],…,第6组[182.5,187.5],如图是按上述分组方法得到的频率分布直方图.
(Ⅰ)试评估我校高三年级男生在全省高中男生中的平均身高状况;
(Ⅱ)求这50名男生身高在177.5cm以上(含177.5cm)的人数;
(Ⅲ)在这50名男生身高在177.5cm以上(含177.5cm)的人中任意抽取2人,该2人
中身高排名(从高到低)在全省前130名的人数记为ξ,求ξ的数学期望.
参考数据:
若ξ~N(μ,σ2),则P(μ-σ<ξ≤μ+σ)=0.6826,P(μ-2σ<ξ≤μ+2σ)=0.9544,
P(μ-3σ<ξ≤μ+3σ)=0.9974.

查看答案和解析>>

科目:高中数学 来源: 题型:

高二年级从参加期末考试的学生中抽出60名学生,并统计了他们的物理成绩(成绩均为整数且满分为100分),把其中不低于50分的分成五段[50,60),[60,70)…[90,100]后画出如下部分频率分布直方图.观察图形的信息,回答下列问题:
(1)根据江苏省高中学业水平测试要求,成绩低于60分属于C级,需要补考,求抽取的60名学生中需要补考的学生人数;
(2)年级规定,本次考试80分及以上为优秀,估计这次考试物理学科优秀率;
(3)根据(1),从参加补考的学生中选两人,求他们成绩至少有一个不低于50分的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在(-1,1)上的函数f(x)-f(y)=f(
x-y
1-xy
);当x∈(-1,0)时f(x)>0.若P=f(
1
5
)+f(
1
11
),Q=f(
1
2
),R=f(0);则P,Q,R的大小关系为(  )
A、P<Q<R
B、R<Q<P
C、R<P<Q
D、Q<P<R

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(2sin(ωx+
3
),2),
b
=(2cosωx,0)(ω>0),函数f(x)=
a
b
的图象与直线y=-2+
3
的相邻两个交点之间的距离为π.
(1)求ω的值;
(2)求函数f(x)在[0,π]上的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,
m
=(1,1-
3
sinA)
n
=(cosA,1),且
m
n
,则A=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
b
的夹角为120°,且|
a
|=|
b
|=1,
c
=
1
2
a
+
1
4
b
,则
a
c
的夹角大小为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x)对于任意x.∈R,都有f(x+4)=-
1
f(x)
,设an=f(n)(n∈N),则
f(200)+f(201)+f(202)+f(203)
f(8)+f(9)+f(10)+f(11)
=
 

查看答案和解析>>

同步练习册答案