精英家教网 > 高中数学 > 题目详情
已知定义在R上的函数f(x)对于任意x.∈R,都有f(x+4)=-
1
f(x)
,设an=f(n)(n∈N),则
f(200)+f(201)+f(202)+f(203)
f(8)+f(9)+f(10)+f(11)
=
 
考点:抽象函数及其应用
专题:函数的性质及应用
分析:根据条件确定函数是8的周期,利用函数的周期性将函数进行转化进行求解即可.
解答: 解:由f(x+4)=-
1
f(x)
得f(x+8)=-
1
f(x+4)
=f(x),
即函数f(x)的周期是8,
f(200)+f(201)+f(202)+f(203)
f(8)+f(9)+f(10)+f(11)
=
f(8)+f(9)+f(10)+f(11)
f(8)+f(9)+f(10)+f(11)
=1,
故答案为:1
点评:本题主要考查函数值的计算,根据条件确定函数的周期性是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=ax-
1
x
,且f(-2)=-
3
2

(1)求f(x)的解析式;
(2)判断函数f(x)在(0,+∞)上的单调性并加以证明;
(3)求函数f(x)在[
1
2
,2]
上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知单调递增的等比数列{an}中,a2+a3+a4=28,且a3+2是a2,a4的等差中项,
(1)求an
(2)设bn=log
1
2
an,Sn=b1+b2+…+bn,求Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知,
m
=(2cosωx+2
3
sinωx,1),
n
=(cosωx,-2),若函数f(x)=
m
n
的图象的一个对称中心为(
π
12
,-1),其中|ω|≤1.
(1)求函数f(x)的解析式;
(2)已知a,b,c分别为△ABC的三个内角A,B,C的对应的边长,若f(
A
2
)=-2,且a=2,b+c=4,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
=(sinx,1),
b
=(cosx-
1
2
)
,函数f(x)=
a
•(
a
-
b
)
,下列四个命题:
①f(x)是周期函数,其最小正周期为2π;
②当x=
π
8
时,f(x)有最小值2-
2
2

[-
8
,-
8
]
是函数f(x)的一个单调递增区间;
④点(-
π
8
,2)
是函数f(x)的一个对称中心.
正确命题的个数是(  )
A、0B、1C、2D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
b
满足|
a
-
b
|=
6
a
b
=1,则|
a
+
b
|=(  )
A、
6
B、2
2
C、
10
D、10

查看答案和解析>>

科目:高中数学 来源: 题型:

曲线y2=x+1,P为曲线上任意一点,求点P关于直线y=x+1对称点Q的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x,y,z均为实数,
(1)x+y+z=1,求证:
3x+1
+
3y+2
+
3z+3
≤3
3

(2)若x+2y+3z=6,求x2+y2+z2的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(log33+log39)(log32+log38)=
 

查看答案和解析>>

同步练习册答案