精英家教网 > 高中数学 > 题目详情
已知向量
a
b
的夹角为120°,且|
a
|=|
b
|=1,
c
=
1
2
a
+
1
4
b
,则
a
c
的夹角大小为
 
考点:平面向量数量积的运算
专题:平面向量及应用
分析:向量
a
b
的夹角为120°,且|
a
|=|
b
|=1,可得
a
b
=-
1
2
.
a
c
=
1
2
a
2
+
1
4
a
b
=
3
8
.|
c
|
=
1
4
a
2
+
1
16
b
2
+
1
4
a
b
.利用cos<
a
c
=
a
c
|
a
||
c
|
即可得出.
解答: 解:∵向量
a
b
的夹角为120°,且|
a
|=|
b
|=1,
a
b
=cos120°=-
1
2

a
c
=
1
2
a
2
+
1
4
a
b
=
1
2
+
1
4
×(-
1
2
)
=
3
8

|
c
|
=
1
4
a
2
+
1
16
b
2
+
1
4
a
b
=
1
4
+
1
16
-
1
4
×
1
2
=
3
4

cos<
a
c
=
a
c
|
a
||
c
|
=
3
8
3
4
=
3
2

a
c
的夹角大小为30°.
故答案为:30°.
点评:本题考查了向量数量积运算性质、向量夹角公式,考查了推理能力与计算能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

有一根长为5cm,底面半径为0.5cm的圆柱形铁管,用一段铁丝在铁管上缠绕4圈,并使铁丝的两个端点落在圆柱的同一母线的两端,求铁丝的最短长度是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax-
1
x
,且f(-2)=-
3
2

(1)求f(x)的解析式;
(2)判断函数f(x)在(0,+∞)上的单调性并加以证明;
(3)求函数f(x)在[
1
2
,2]
上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

为了完成绿化任务,某林区改变植树计划,第一年的植物增长率为200%,以后每年的植树增长率都是前一年植树增长率的
1
2

(1)假设成活率为100%,经过4年后,林区的树木数量是原来树木数量的多少倍?
(2)如果每年都有5%的树木死亡,那么经过多少年后,林区的树木数量开始下降?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
b
满足|
a
|=3,|
b
|=2
3
,且
a
⊥(
a
+
b
),则向量
a
b
的夹角是(  )
A、90°B、120°
C、135°D、150°

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(1,2),
b
=(2x,-3),若
a
⊥(
a
+
b
),则x=(  )
A、3
B、-
1
2
C、-3
D、
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知单调递增的等比数列{an}中,a2+a3+a4=28,且a3+2是a2,a4的等差中项,
(1)求an
(2)设bn=log
1
2
an,Sn=b1+b2+…+bn,求Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知,
m
=(2cosωx+2
3
sinωx,1),
n
=(cosωx,-2),若函数f(x)=
m
n
的图象的一个对称中心为(
π
12
,-1),其中|ω|≤1.
(1)求函数f(x)的解析式;
(2)已知a,b,c分别为△ABC的三个内角A,B,C的对应的边长,若f(
A
2
)=-2,且a=2,b+c=4,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x,y,z均为实数,
(1)x+y+z=1,求证:
3x+1
+
3y+2
+
3z+3
≤3
3

(2)若x+2y+3z=6,求x2+y2+z2的最小值.

查看答案和解析>>

同步练习册答案