精英家教网 > 高中数学 > 题目详情
已知f(x)是定义在[-1,1]上的奇函数,且f(1)=1,若m,n∈[-1,1],m+n≠0时,有
f(m)+f(n)
m+n
>0.
(Ⅰ)证明f(x)在[-1,1]上是增函数;
(Ⅱ)解不等式f(x2-1)+f(3-3x)<0
(Ⅲ)若f(x)≤t2-2at+1对?x∈[-1,1],a∈[-1,1]恒成立,求实数t的取值范围.
考点:奇偶性与单调性的综合,函数单调性的判断与证明,函数奇偶性的判断
专题:综合题,函数的性质及应用
分析:(Ⅰ)任取-1≤x1<x2≤1,则f(x1)-f(x2)=f(x1)+f(-x2)=
f(x1)+f(-x2)
x1-x2
(x1-x2)
,由已知
f(x1)+f(-x2)
x1-x2
>0,x1-x2<0
,可比较f(x1)与f(x2)的大小,由单调性的定义可作出判断;
(Ⅱ)利用函数的奇偶性可把不等式化为f(x2-1)<f(3x-3),在由单调性得x2-1<3x-3,还要考虑定义域;
(Ⅲ)要使f(x)≤t2-2at+1对?x∈[-1,1]恒成立,只要f(x)max≤t2-2at+1,由f(x)在[-1,1]上是增函数易求f(x)max,再利用关于a的一次函数性质可得不等式组,保证对a∈[-1,1]恒成立;
解答: 解:(Ⅰ)任取-1≤x1<x2≤1,
f(x1)-f(x2)=f(x1)+f(-x2)=
f(x1)+f(-x2)
x1-x2
(x1-x2)

∵-1≤x1<x2≤1,∴x1+(-x2)≠0,
由已知
f(x1)+f(-x2)
x1-x2
>0,x1-x2<0

∴f(x1)-f(x2)<0,即f(x1)<f(x2),
∴f(x)在[-1,1]上是增函数;
(Ⅱ)∵f(x)是定义在[-1,1]上的奇函数,且在[-1,1]上是增函数,
∴不等式化为f(x2-1)<f(3x-3),
x2-1<3x-3
-1≤x2-1≤1
-1≤3x-3≤1
,解得x∈(1,
4
3
]

(Ⅲ)由(Ⅰ)知f(x)在[-1,1]上是增函数,
∴f(x)在[-1,1]上的最大值为f(1)=1,
要使f(x)≤t2-2at+1对?x∈[-1,1]恒成立,只要t2-2at+1≥1⇒t2-2at≥0,
设g(a)=t2-2at,对?a∈[-1,1],g(a)≥0恒成立,
g(-1)=t2+2t≥0
g(1)=t2-2t≥0
t≥0或t≤-2
t≥2或t≤0

∴t≥2或t≤-2或t=0.
点评:本题考查抽象函数的单调性、奇偶性,考查抽象不等式的求解,可从恒成立问题,考查转化思想,考查学生灵活运用知识解决问题的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知复数z=(1-i)2+1+3i.
(1)若z2+az+b=1-i,求实数a,b的值;
(2)若复数(
1
z
+mi)2在复平面上对应的点在第一象限,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知矩阵A对应的变换是先将某平面图形上的点的横坐标保持不变,纵坐标变为原来的2倍,再将所得图形绕原点按顺时针方向旋转90°.
(1)求矩阵A及A的逆矩阵B;
(2)已知矩阵M=
33
24
,求M的特征值和特征向量;
(3)若α=
8
1
在矩阵B的作用下变换为β,求M50β(运算结果用指数式表示).

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=aln(x+1)+x2
(Ⅰ)当a>0时,求函数的极大值和极小值点;
(Ⅱ)证明:对任意的正整数n,不等式ln
n2+1
n2+n
1
n2
-
1
n4
恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知不等式mx2-2x-m+1<0.
(1)若对于任意x∈(
1
2
,2]不等式恒成立,求m的取值范围;
(2)设不等式对于满足|m|≤2的一切m的值都成立,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

甲、乙两人约定在上午7:00到8:00之间到某站乘公共汽车,在这段时间内有3班公共汽车,它们开车时刻分别为7:20、7:40、8:00,如果他们约定,见车就乘,求甲、乙同乘一班车的概率(假定甲、乙两人到达车站的时刻是互相不关联的,且每人在7时到8时的任何时刻到达车站是等可能的)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线y2=4x上恒有两点关于直线y=kx+3对称,则k的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设抛物线y2=2px(p>0)的焦点为F,准线为l,点A(0,2),线段FA与抛物线交于点B,过B作l的垂线,垂足为M.若AM⊥MF,则p=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的奇函数f(x)对任意x∈R都有f(x+2)=-f(x),当x∈[-1,0)时,f(x)=4x,则f(1)+f(2)+…+f(2014)=
 

查看答案和解析>>

同步练习册答案