| A. | -2 | B. | -1 | C. | 1 | D. | 2 |
分析 根据函数奇偶性的性质建立方程关系进行求解即可.
解答 解:∵f(x)=$\frac{3x-a}{{x}^{2}+bx-1}$是定义在(-1,1)上的奇函数,
∴f(0)=0,
即$\frac{-a}{-1}=a$=0,
则f(x)=$\frac{3x}{{x}^{2}+bx-1}$,
∵f(-x)=-f(x),
∴$\frac{-3x}{{x}^{2}-bx-1}$=-$\frac{3x}{{x}^{2}+bx-1}$,
整理得-bx=bx恒成立,则b=0,
则f(x)=$\frac{3x}{{x}^{2}-1}$,
则f($\frac{1}{2}$)=$\frac{3×\frac{1}{2}}{\frac{1}{4}-1}=-2$,
故选:A
点评 本题主要考查函数值的计算,根据函数奇偶性的性质建立方程关系是解决本题的关键.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 产品 所需原料 原料 | A产品 (1吨) | B产品 (1吨) | 现有原料 (吨) |
| 甲原料(吨) | 4 | 5 | 200 |
| 乙原料(吨) | 3 | 10 | 300 |
| 利润(万元) | 7 | 12 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | p∧q为真 | B. | p∨q为假 | C. | ¬p为真 | D. | ¬q为真 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {x|x<1} | B. | {x|0<x<1} | C. | {x|0<x≤1} | D. | {x|x>1} |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com