分析 (1)利用互斥事件概率加法公式能求出乙至少击中目标2次的概率.
(2)设乙恰好比甲多击中目标2次为事件A,则A包含以下2个互斥事件:B1:乙恰好击中目标2次且甲恰好击中目标0次,B2:乙恰好击中目标3次且甲恰好击中目标1次,由此能求出乙恰好比甲多击中目标2次的概率.
解答 解:(1)乙至少击中目标2次的概率为:
p=$C_3^2{(\frac{2}{3})^2}•\frac{1}{3}+C_3^3{(\frac{2}{3})^3}=\frac{20}{27}$.
(2)设乙恰好比甲多击中目标2次为事件A,
则A包含以下2个互斥事件:
B1:乙恰好击中目标2次且甲恰好击中目标0次,
P(B1)=$C_3^2{(\frac{2}{3})^2}•\frac{1}{3}•C_3^0{(\frac{1}{2})^3}=\frac{1}{18}$.
B2:乙恰好击中目标3次且甲恰好击中目标1次,
P(B2)=$C_3^3{(\frac{2}{3})^3}••C_3^1{(\frac{1}{2})^3}=\frac{1}{9}$.
则P(A)=P(B1)+P(B2)=$\frac{1}{18}+\frac{1}{9}=\frac{1}{6}$.
所以,乙恰好比甲多击中目标2次的概率为$\frac{1}{6}$.
点评 本题考查概率的求法,是基础题,解题时要认真审题,注意互斥事件概率加法公式的合理运用.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{2}}{2}$ | B. | $\frac{\sqrt{3}}{3}$ | C. | $\frac{1}{2}$ | D. | $\frac{\sqrt{5}}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| P(k2≥k0) | 0.100 | 0.050 | 0.025 | 0.010 | 0.001 |
| k0 | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
| A. | 0.1% | B. | 1% | C. | 99% | D. | 99.9% |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 16 | B. | 72 | C. | 37 | D. | 100 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com