已知函数,曲线在点处的切线方程为.
(1)求的值;
(2)求在上的最大值.
(1);(2).
解析试题分析:(1)将切点代入切线方程确定的值,求,由切线方程,可知,列出关于的方程组即可求解;(2)由(1)确定的,确定,用导数确定在区间的极大值与极小值,然后比较极大值、端点值,即可得到函数在区间的最大值.
科目:高中数学
来源:
题型:解答题
已知函数f(x)=ax3+3x2-6ax-11,g(x)=3x2+6x+12和直线m:y=kx+9,且f′(-1)=0.
科目:高中数学
来源:
题型:解答题
某村庄拟修建一个无盖的圆柱形蓄水池(不计厚度).设该蓄水池的底面半径为r米,高为h米,体积为V立方米.假设建造成本仅与表面积有关,侧面的建造成本为100元/平方米,底面的建造成本为160元/平方米,该蓄水池的总建造成本为12 000π元(π为圆周率).
科目:高中数学
来源:
题型:解答题
已知函数f(x)=.
科目:高中数学
来源:
题型:解答题
已知函数f(x)=aln x=(a为常数).
科目:高中数学
来源:
题型:解答题
已知函数f(x)=ex-kx2,x∈R.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
试题解析:(1)依题意可知点为切点,代入切线方程可得
所以即
又由,得
而由切线方程的斜率可知
所以即
联立 7分
解得,, 8分
(2)由(1)知 9分
令,得或 10分
当变化时,的变化如下表:1 + 0 - 0
(1)求a的值.
(2)是否存在k的值,使直线m既是曲线y=f(x)的切线,又是曲线y=g(x)的切线?如果存在,求出k的值;如果不存在,说明理由.
(1)将V表示成r的函数V(r),并求该函数的定义域;
(2)讨论函数V(r)的单调性,并确定r和h为何值时该蓄水池的体积最大.
(1)确定y=f(x)在(0,+∞)上的单调性;
(2)若a>0,函数h(x)=xf(x)-x-ax2在(0,2)上有极值,求实数a的取值范围.
(1)若曲线y=f(x)在点(1,f(1))处的切线与直线x+2y-5=0垂直,求a的值;
(2)求函数f(x)的单调区间;
(3)当x≥1时,f(x)≤2x-3恒成立,求a的取值范围.
(1)若k=,求证:当x∈(0,+∞)时,f(x)>1;
(2)若f(x)在区间(0,+∞)上单调递增,试求k的取值范围;
(3)求证:<e4(n∈N*)..
版权声明:本站所有文章,图片来源于网络,著作权及版权归原作者所有,转载无意侵犯版权,如有侵权,请作者速来函告知,我们将尽快处理,联系qq:3310059649。
ICP备案序号: 沪ICP备07509807号-10 鄂公网安备42018502000812号