精英家教网 > 高中数学 > 题目详情
21、已知正方体ABCD-A1B1C1D1,O是底ABCD对角线的交点.
求证:(1)C1O∥面AB1D1
(2 )A1C⊥面AB1D1
分析:(1)欲证C1O∥面AB1D1,根据直线与平面平行的判定定理可知只需证C1O与面AB1D1内一直线平行,连接A1C1,设A1C1∩B1D1=O1,连接AO1,易得C1O∥AO1,AO1?面AB1D1,C1O?面AB1D1,满足定理所需条件;
(2)欲证A1C⊥面AB1D1,根据直线与平面垂直的判定定理可知只需证A1C与面AB1D1内两相交直线垂直根据线面垂直的性质可知A1C⊥B1D1,同理可证A1C⊥AB1,又D1B1∩AB1=B1,满足定理所需条件.
解答:证明:(1)连接A1C1,设A1C1∩B1D1=O1,连接AO1
∵ABCD-A1B1C1D1是正方体,
∴A1ACC1是平行四边形,
∴A1C1∥AC且A1C1=AC,
又O1,O分别是A1C1,AC的中点,
∴O1C1∥AO且O1C1=AO,
∴AOC1O1是平行四边形,
∴C1O∥AO1,AO1?面AB1D1,C1O?面AB1D1
∴C1O∥面AB1D1
(2)∵CC1⊥面A1B1C1D1∴CC1⊥B1D!
又∵A1C1⊥B1D1,∴B1D1⊥面A1C1C,即A1C⊥B1D1
同理可证A1C⊥AB1,又D1B1∩AB1=B1
∴A1C⊥面AB1D1
点评:本题主要考查了线面平行、线面垂直的判定定理,考查对基础知识的综合应用能力和基本定理的掌握能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,已知正方体ABCD-A1B1C1D1的棱长为2,点P在平面DD1C1C内,PD1=PC1=
2
.求证:
(1)平面PD1A1⊥平面D1A1BC;
(2)PC1∥平面A1BD.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正方体ABCD-A1B1C1D1中,E、F分别为BB1、CC1的中点,那么直线AE与D1F所成角的余弦值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正方体ABCD-A1B1C1D1中,E为棱CC1的动点.
(1)当E恰为棱CC1的中点时,试证明:平面A1BD⊥平面EBD;
(2)在棱CC1上是否存在一个点E,可以使二面角A1-BD-E的大小为45°?如果存在,试确定点E在棱CC1上的位置;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正方体ABCD-A1B1C1D1,则四面体A1-C1BD在面A1B1C1D1上的正投影的面积与该四面体表面积之比是
3
6
3
6

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知正方体ABCD-A1B1C1D1,O是底ABCD对角线的交点.
(1)求证:C1O∥面AB1D1
(2)求异面直线AD1与 C1O所成角的大小.

查看答案和解析>>

同步练习册答案