分析 通过建立坐标系,设C(a,0),D(0,b),利用数量积的坐标运算得出数量积关于a,b的函数,求出函数的最小值.
解答
解:设AC与BD交点为O,以O为原点,AC,BD为坐标轴建立平面直角坐标系,
设C(a,0),D(0,b),则A(a-2,0),B(0,b-3),
∴$\overrightarrow{AB}$=(2-a,b-3),$\overrightarrow{CD}$=(-a,b).
∴$\overrightarrow{AB}•\overrightarrow{CD}$=a(a-2)+b(b-3)=(a-1)2+(b-$\frac{3}{2}$)2-$\frac{13}{4}$.
∴当a=1,b=$\frac{3}{2}$时,$\overrightarrow{AB}$•$\overrightarrow{CD}$取得最小值-$\frac{13}{4}$.
故答案为:-$\frac{13}{4}$.
点评 本题考查平面向量数量积的运算,涉及向量的坐标运算和向量的模的计算以及向量的夹角公式等基础知识,注意解题方法的积累,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 若m⊥α,m⊥β,则α∥β | B. | 若m?α,m⊥β,则α⊥β | C. | 若m⊥α,n∥α,则m⊥n | D. | 若m⊥α,α⊥β,则m∥β |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com