精英家教网 > 高中数学 > 题目详情
5.在△ABC中,已知$\frac{{a}^{2}sinB}{cosB}$=$\frac{{b}^{2}sinA}{cosA}$,试判断△ABC的形状.

分析 运用正弦定理和二倍角公式,结合诱导公式,可得A=B或A+B=90°,即可判断三角形的形状.

解答 解:由正弦定理可得,a=2RsinA,b=2RsinB,
$\frac{{a}^{2}sinB}{cosB}$=$\frac{{b}^{2}sinA}{cosA}$,即为
a2sinBcosA=b2sinAcosB,
即有sin2AsinBcosA=sin2BsinAcosB,
即sinAcosA=sinBcosB,
即有sin2A=sin2B,
即2A=2B或2A+2B=180°,
即为A=B或A+B=90°,
则三角形为等腰三角形或直角三角形.

点评 本题考查正弦定理的运用:判断三角形的形状,同时考查二倍角公式和诱导公式的运用,属于基础题和易错题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.已知一个关于x,y的二元一次方程组的增广矩阵为$(\begin{array}{l}{1}&{-1}&{2}\\{0}&{1}&{2}\end{array})$,则x-y=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知直线l过点P(-3,4)
(1)若直线l在两坐标轴上的截距之和为12,求直线的方程;
(2)若直线l与x轴负半轴,y轴正半轴分别交于A、B两点,试求△AOB面积的最小值及此时直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设平面区域D是不等式组$\left\{\begin{array}{l}{x-y≥0}\\{x+y≥0}\\{2x-y-3≤0}\end{array}\right.$的解集,将D绕直线x-y=0旋转一周后所得几何体的体积等于(  )
A.$\frac{4\sqrt{2}}{3}$πB.$\sqrt{2}$πC.2$\sqrt{2}$πD.3$\sqrt{2}$π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知全集U=R,A={x|x+2≥0},B={x|x>3},利用数轴求:
(1)A∩B和A∪B;
(2)∁U(A∩B)和A∪(∁UB)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.复数z=$\frac{3+i}{1-i}$的共轭复数$\overline z$=(  )
A.2+iB.2-iC.1+2iD.1-2i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知{an}是等差数列,Sn为其前n项和,若S13=S2000,则S2013=(  )
A.-2014B.2014C.1007D.0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.等差数列{an}的前n项和为Sn,已知(a1006-1)3+2014(a1006-1)=1,(a1009-1)3+2014(a1009-1)=-1,则(  )
A.S2014=2014,a1009>a1006B.S2014=2014,a1009<a1006
C.S2014=-2014,a1009>a1006D.S2014=-2014,a1009<a1006

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.能够把圆O:x2+y2=16的周长和面积同时分成相等的两部分的函数称为圆O的“和谐函数”,下列函数不是圆O的“和谐函数”的是(  )
A.f(x)=ln[(4-x)(4+x)]B.f(x)=tan$\frac{x}{2}$C.f(x)=ex-e-xD.f(x)=x3

查看答案和解析>>

同步练习册答案