精英家教网 > 高中数学 > 题目详情
13.角θ的顶点与原点重合,始边与x轴非负半轴重合,终边在直线y=2x上,则tan2θ=(  )
A.2B.-4C.$-\frac{3}{4}$D.$-\frac{4}{3}$

分析 利用直线斜率的定义、二倍角的正切公式,进行计算即可.

解答 解:∵角θ的始边与x轴的非负半轴重合,终边在直线y=2x上,
∴tanθ=2;
∴tan2θ=$\frac{2tanθ}{1-ta{n}^{2}θ}$=-$\frac{4}{3}$,
故选D.

点评 本题考查了直线斜率的定义与二倍角的正切公式的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=$\frac{x-a}{{x}^{2}+1}$,g(x)=x3-kx,其中a,k∈R.
(1)若f(x)的一个极值点为$\frac{1}{2}$,求f(x)的单调区间与极小值;
(2)当a=0时,?x1∈[0,2],x2∈[1,2],f(x1)≠g(x2),且g(x)在[1,2]上有极值,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在等差数列{an}中,a10=$\frac{1}{2}$a14-6,则数列{an}的前11项和等于(  )
A.132B.66C.-132D.-66

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.如图所示点F是抛物线y2=8x的焦点,点A、B分别在抛物线y2=8x及圆x2+y2-4x-12=0的实线部分上运动,且AB总是平行于x轴,则△FAB的周长的取值范围是(  )
A.(6,10)B.(8,12)C.[6,8]D.[8,12]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知实数x,y满足$\left\{\begin{array}{l}2x-y-5≥0\\ 2x+y-3≥0\\ y≤x\end{array}\right.$,则z=-3x-y的最大值为(  )
A.-19B.-7C.-5D.-4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在平面直角坐标系中,定义d(P,Q)=|x1-x2|+|y1-y2|为两点P(x1,y1),Q(x2,y2)之间的“折线距离”.则下列命题中:
①若C点在线段AB上,则有d(A,C)+d(C,B)=d(A,B).
②若点A,B,C是三角形的三个顶点,则有d(A,C)+d(C,B)>d(A,B).
③到M(-1,0),N(1,0)两点的“折线距离”相等的点的轨迹是直线x=0.
④若A为坐标原点,B在直线x+y-2$\sqrt{5}$=0上,则d(A,B)的最小值为2$\sqrt{5}$.
真命题的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知平面α与两条不重合的直线a,b,则“a⊥α,且b⊥α”是“a∥b”的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.比较lg2,(lg2)2,lg(lg2)的大小,其中最大的是lg2,最小的是lg(lg2).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知向量$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(-1,1),则2$\overrightarrow{a}$+$\overrightarrow{b}$的坐标为(  )
A.(1,5)B.(-1,4)C.(0,3)D.(2,1)

查看答案和解析>>

同步练习册答案