精英家教网 > 高中数学 > 题目详情
4.在等差数列{an}中,a10=$\frac{1}{2}$a14-6,则数列{an}的前11项和等于(  )
A.132B.66C.-132D.-66

分析 设其公差为d,利用等差数列的通项公式得到a6=-12.所以由等差数列的性质求得其前n项和即可.

解答 解:∵数列{an}为等差数列,设其公差为d,
∵a10=$\frac{1}{2}$a14-6,
∴a1+9d=$\frac{1}{2}$(a1+13d)-6,
∴a1+5d=-12,即a6=-12.
∴数列{an}的前11项和S11=a1+a2+…+a11
=(a1+a11)+(a2+a10)+…+(a5+a7)+a6
=11a6
=-132.
故选:C.

点评 本题考查了等差数列的通项公式,考查了等差数列的前n项和,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知椭圆E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$,左焦点是F1
(1)若左焦点F1与椭圆E的短轴的两个端点是正三角形的三个顶点,点$Q({\sqrt{3},\frac{1}{2}})$在椭圆E上.求椭圆E的方程;
(2)过原点且斜率为t(t>0)的直线l1与(1)中的椭圆E交于不同的两点G,H,设B1(0,1),A1(2,0),求四边形A1GB1H的面积取得最大值时直线l1的方程;
(3)过左焦点F1的直线l2交椭圆E于M,N两点,直线l2交直线x=-p(p>0)于点P,其中p是常数,设$\overrightarrow{PM}=λ\overrightarrow{M{F_1}}$,$\overrightarrow{PN}=μ\overrightarrow{N{F_1}}$,计算λ+μ的值(用p,a,b的代数式表示).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知i是虚数单位,复数$z=\frac{{{{({1+i})}^2}+3({1-i})}}{2+i}$,若z2+az+b=1+i,求实数a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设集合A={x|y=lg(x-2)},集合B={x|y=$\sqrt{3-x}$},则A∩B=(  )
A.{x|x<2}B.{x|x≤2}C.{x|2<x≤3}D.{x|2≤x<3}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若$\frac{2co{s}^{2}α+cos(\frac{π}{2}+2α)-1}{\sqrt{2}sin(2α+\frac{π}{4})}$=4,则tan(2α+$\frac{π}{4}$)=(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{1}{4}$D.$\frac{1}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点为F,点P在双曲线的左支上,且PF与圆x2+y2=a2相切于点M,若M恰为线段PF的中点,则双曲线的离心率为(  )
A.$\sqrt{2}$B.$\sqrt{5}$C.$\sqrt{10}$D.2$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知f(x)是偶函数,且f(x)在[0,+∞)上是增函数,若f(ax+1)≤f(x-2)在$x∈[{\frac{1}{2}\;,\;1}]$上恒成立,则实数a的取值范围是(  )
A.[-2,1]B.[-2,0]C.[-1,1]D.[-1,0]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.角θ的顶点与原点重合,始边与x轴非负半轴重合,终边在直线y=2x上,则tan2θ=(  )
A.2B.-4C.$-\frac{3}{4}$D.$-\frac{4}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若函数y=f(x)是定义在R上的周期为2的奇函数,则f(2017)=(  )
A.-2017B.0C.1D.2017

查看答案和解析>>

同步练习册答案