14£®ÒÑÖªÍÖÔ²E£º$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1£¨a£¾b£¾0£©$£¬×ó½¹µãÊÇF1£®
£¨1£©Èô×ó½¹µãF1ÓëÍÖÔ²EµÄ¶ÌÖáµÄÁ½¸ö¶ËµãÊÇÕýÈý½ÇÐεÄÈý¸ö¶¥µã£¬µã$Q£¨{\sqrt{3}£¬\frac{1}{2}}£©$ÔÚÍÖÔ²EÉÏ£®ÇóÍÖÔ²EµÄ·½³Ì£»
£¨2£©¹ýÔ­µãÇÒбÂÊΪt£¨t£¾0£©µÄÖ±Ïßl1Ó루1£©ÖеÄÍÖÔ²E½»ÓÚ²»Í¬µÄÁ½µãG£¬H£¬ÉèB1£¨0£¬1£©£¬A1£¨2£¬0£©£¬ÇóËıßÐÎA1GB1HµÄÃæ»ýÈ¡µÃ×î´óֵʱֱÏßl1µÄ·½³Ì£»
£¨3£©¹ý×ó½¹µãF1µÄÖ±Ïßl2½»ÍÖÔ²EÓÚM£¬NÁ½µã£¬Ö±Ïßl2½»Ö±Ïßx=-p£¨p£¾0£©ÓÚµãP£¬ÆäÖÐpÊdz£Êý£¬Éè$\overrightarrow{PM}=¦Ë\overrightarrow{M{F_1}}$£¬$\overrightarrow{PN}=¦Ì\overrightarrow{N{F_1}}$£¬¼ÆËã¦Ë+¦ÌµÄÖµ£¨ÓÃp£¬a£¬bµÄ´úÊýʽ±íʾ£©£®

·ÖÎö £¨1£©ÀûÓÃ×ó½¹µãF1ÓëÍÖÔ²EµÄ¶ÌÖáµÄÁ½¸ö¶ËµãÊÇÕýÈý½ÇÐεÄÈý¸ö¶¥µã£¬µã$Q£¨{\sqrt{3}£¬\frac{1}{2}}£©$ÔÚÍÖÔ²EÉÏ£®Áгö·½³Ì×éÇó½âa£¬b¿ÉµÃÍÖÔ²·½³Ì£®
£¨2£©ÉèÖ±Ïßl1µÄ·½³Ìy=tx£¬ÁªÁ¢$\left\{\begin{array}{l}y=tx\\ \frac{x^2}{4}+\frac{y^2}{1}=1\end{array}\right.$£¬Çó½â$|{GH}|=\sqrt{1+{t^2}}•\frac{4}{{\sqrt{4{t^2}+1}}}$£¬${d_{{A_1}-{l_1}}}=|{\frac{2t}{{\sqrt{{t^2}+1}}}}|=\frac{2t}{{\sqrt{{t^2}+1}}}$£¬${d_{{B_1}-{l_1}}}=\frac{1}{{\sqrt{{t^2}+1}}}$£¬ÍƳöËıßÐÎA1GB1HµÄÃæ»ý£¬Çó³ö×î´óÖµ£¬È»ºóÇó½âÖ±Ïß·½³Ì£®                    
£¨3£©ÉèÖ±Ïßl2µÄ·½³Ìy=k£¨x+c£©½»ÍÖÔ²b2x2+a2y2-a2b2=0ÓÚM£¨x1£¬y1£©£¬N£¨x2£¬y2£©£¬ÀûÓÃΤ´ï¶¨Àí£¬½áºÏ
ÌâÉè$\overrightarrow{PM}=¦Ë\overrightarrow{M{F_1}}$£¬$\overrightarrow{PN}=¦Ì\overrightarrow{N{F_1}}$£¬Çó½â¦Ë+¦Ì¼´¿É£®

½â´ð £¨±¾Ð¡ÌâÂú·Ö13·Ö£©
½â£º£¨1£©×ó½¹µãF1ÓëÍÖÔ²EµÄ¶ÌÖáµÄÁ½¸ö¶ËµãÊÇÕýÈý½ÇÐεÄÈý¸ö¶¥µã£¬µã$Q£¨{\sqrt{3}£¬\frac{1}{2}}£©$ÔÚÍÖÔ²EÉÏ£®
$\left\{\begin{array}{l}c=\sqrt{3}b\\ \frac{3}{a^2}+\frac{1}{{4{b^2}}}=1\\{a^2}-{b^2}={c^2}\end{array}\right.$£¨3·Ö£©
¡à$\left\{\begin{array}{l}{a^2}=4\\{b^2}=1\end{array}\right.$£¬ËùÒÔÍÖÔ²·½³Ì$\frac{x^2}{4}+\frac{y^2}{1}=1$    £¨2·Ö£©
£¨2£©ÉèÖ±Ïßl1µÄ·½³Ìy=tx
ÁªÁ¢$\left\{\begin{array}{l}y=tx\\ \frac{x^2}{4}+\frac{y^2}{1}=1\end{array}\right.$£¬¿ÉÒÔ¼ÆËã$|{GH}|=\sqrt{1+{t^2}}•\frac{4}{{\sqrt{4{t^2}+1}}}$£¨1·Ö£©
${d_{{A_1}-{l_1}}}=|{\frac{2t}{{\sqrt{{t^2}+1}}}}|=\frac{2t}{{\sqrt{{t^2}+1}}}$£¬${d_{{B_1}-{l_1}}}=\frac{1}{{\sqrt{{t^2}+1}}}$£¨1·Ö£©
${S_{ËÄ{A_1}G{B_1}H}}=\frac{1}{2}£¨{\frac{2t+1}{{\sqrt{{t^2}+1}}}}£©•\frac{{4\sqrt{{t^2}+1}}}{{\sqrt{4{t^2}+1}}}$£¬
¡à${S_{ËÄ{A_1}G{B_1}H}}=\frac{{2£¨{2t+1}£©}}{{\sqrt{4{t^2}+1}}}$£¨2·Ö£©
${S^2}_{ËÄ{A_1}G{B_1}H}=4£¨{1+\frac{4}{{4t+\frac{1}{t}}}}£©¡Ü4£¨{1+\frac{4}{{2\sqrt{4t+\frac{1}{t}}}}}£©$£¬
¡à$t=\frac{1}{2}£¬{£¨{{S_{ËÄ{A_1}G{B_1}H}}}£©_{max}}=2\sqrt{2}$£¬
ËùÒÔÖ±Ïßl1µÄ·½³ÌÊÇ$y=\frac{1}{2}x$£¨2·Ö£©                             
£¨3£©ÉèÖ±Ïßl2µÄ·½³Ìy=k£¨x+c£©½»ÍÖÔ²b2x2+a2y2-a2b2=0ÓÚM£¨x1£¬y1£©£¬N£¨x2£¬y2£©£¬
£¨b2+a2k2£©x2+2a2k2cx+a2k2c2-a2b2=0£¬
${x_1}+{x_2}=-\frac{{2{a^2}{k^2}c}}{{{a^2}{k^2}+{b^2}}}£¬{x_1}{x_2}=\frac{{{a^2}{k^2}{c^2}-{a^2}{b^2}}}{{{a^2}{k^2}+{b^2}}}$£¨2·Ö£©
Ö±Ïßl2½»Ö±Ïßx=-p£¨p£¾0£©ÓÚµãP£¬¸ù¾ÝÌâÉè$\overrightarrow{PM}=¦Ë\overrightarrow{M{F_1}}$£¬$\overrightarrow{PN}=¦Ì\overrightarrow{N{F_1}}$£¬
µÃµ½£¨x1+p£¬yp£©=¦Ë£¨-c-x1£¬0-y1£©£¬£¨x1+p£¬yp£©=¦Ë£¨-c-x2£¬0-y2£©£¬
µÃ$¦Ë=-\frac{{{x_1}+p}}{{{x_1}+c}}$£¬$¦Ì=-\frac{{{x_2}+p}}{{{x_2}+c}}$ £¨2·Ö£©
$¦Ë+¦Ì=-£¨{\frac{{{x_1}+p}}{{{x_1}+c}}+\frac{{{x_2}+p}}{{{x_2}+c}}}£©=-\frac{{£¨{{x_1}+p}£©£¨{{x_2}+c}£©+£¨{{x_2}+p}£©£¨{{x_1}+c}£©}}{{£¨{{x_1}+c}£©£¨{{x_2}+c}£©}}$
=$-\frac{{2{x_1}{x_2}+£¨{p+c}£©£¨{{x_1}+{x_2}}£©+2pc}}{{{x_1}{x_2}+c£¨{{x_1}+{x_2}}£©+{c^2}}}$
=-$\frac{\frac{2{a}^{2}{k}^{2}{c}^{2}-2{a}^{2}{b}^{2}}{{a}^{2}{k}^{2}+{b}^{2}}-£¨p+c£©\frac{2{a}^{2}{k}^{2}c}{{a}^{2}{k}^{2}+{b}^{2}}+2pc}{\frac{{a}^{2}{k}^{2}{c}^{2}-{a}^{2}{b}^{2}}{{a}^{2}{k}^{2}+{b}^{2}}-\frac{2{a}^{2}{k}^{2}c}{{a}^{2}{k}^{2}+{b}^{2}}+{c}^{2}}$
=-$\frac{2pc{b}^{2}-2{a}^{2}{b}^{2}}{-{b}^{4}}$
=$\frac{2pc-2{a}^{2}}{{b}^{2}}$
=$\frac{{2£¨{p\sqrt{{a^2}-{b^2}}-{a^2}}£©}}{b^2}$£¨3·Ö£©
¦Ë+¦ÌµÄֵΪ£º$\frac{{2£¨{p\sqrt{{a^2}-{b^2}}-{a^2}}£©}}{b^2}$½áÂÛ£¨1·Ö£©

µãÆÀ ±¾Ì⿼²éÍÖÔ²·½³ÌµÄÇ󷨣¬Ö±ÏßÓëÍÖÔ²µÄλÖùØÏµµÄÓ¦Ó㬿¼²éת»¯Ë¼ÏëÒÔ¼°¼ÆËãÄÜÁ¦£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®ÒÑÖªº¯Êýf£¨x£©=ax+b£¨a£¾0£¬ÇÒa¡Ù1£©£®Èôf£¨x£©µÄͼÏóÈçͼËùʾ£¬
£¨1£©Çóa£¬bµÄÖµ£»
£¨2£©¼Çg£¨x£©=f£¨x£©-logax£¬ÅжÏg£¨x£©ÔÚ¶¨ÒåÓòÄÚÊÇ·ñ´æÔÚÁãµã£¬Èô´æÔÚ£¬ÇëÇó³öÁãµã£¬Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

5£®Ò»¸ö°ë¾¶ÎªrµÄÉÈÐΣ¬ÈôËüµÄÖܳ¤µÈÓÚËüËùÔÚÔ²µÄÖܳ¤µÄÒ»°ë£¬ÔòÉÈÐÎËù¶ÔÔ²ÐĽǵĶÈÊýΪ£¨¦Ð-2£©rad£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®ÎªÑо¿ÖÊÁ¿x£¨µ¥Î»£ºg£©¶Ôµ¯»É³¤¶Èy£¨µ¥Î»£ºcm£©µÄÓ°Ï죬¶Ô²»Í¬ÖÊÁ¿µÄ6¸ùµ¯»É½øÐвâÁ¿£¬µÃµ½ÈçÏÂÊý¾Ý£º
x £¨g£©51015202530
y £¨cm£©7.258.128.959.9010.911.8
£¨1£©»­³öÉ¢µãͼ£»
£¨2£©Èç¹ûÉ¢µãͼÖеĸ÷µã´óÖ·ֲ¼ÔÚÒ»ÌõÖ±Ïߵĸ½½ü£¬ÇóyÓëxÖ®¼äµÄ»Ø¹é·½³Ì£®
£¨ ÆäÖР       $\begin{array}{l}b=\frac{{\sum_{i=1}^n{£¨{x_i}-\overline x£©£¨{y_i}-\overline y£©}}}{{\sum_{i=1}^n{{{£¨{x_i}-\overline x£©}^2}}}}=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{{x_i}^2-n{{\overline x}^2}}}}\\ a=\overline y-b\overline x\end{array}$£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®ÒÑÖªÒ»¸ö¼òµ¥¼¸ºÎµÄÈýÊÓͼÈçͼËùʾ£¬Èô¸Ã¼¸ºÎÌåµÄÌå»ýΪ24¦Ð+48£¬Ôò¸Ã¼¸ºÎÌåµÄ±íÃæ»ýΪ£¨¡¡¡¡£©
A£®24¦Ð+48B£®$24¦Ð+90+6\sqrt{41}$C£®48¦Ð+48D£®$24¦Ð+66+6\sqrt{41}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®ÒÑÖª¸´Êýz=$\frac{1+ai}{1-i}$£¨a¡ÊR£©µÄÐ鲿Ϊ2£¬Ôòa=£¨¡¡¡¡£©
A£®1B£®-1C£®-3D£®3

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®ÉèSnΪÕýÏîÊýÁÐ{an}µÄǰnÏîºÍ£¬a2=3£¬Sn+1£¨2Sn+1+n-4Sn£©=2nSn£¬Ôòa25µÈÓÚ£¨¡¡¡¡£©
A£®3¡Á223B£®3¡Á224C£®223D£®224

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®ÒÑÖªº¯Êýf£¨x£©=$\frac{x-a}{{x}^{2}+1}$£¬g£¨x£©=x3-kx£¬ÆäÖÐa£¬k¡ÊR£®
£¨1£©Èôf£¨x£©µÄÒ»¸ö¼«ÖµµãΪ$\frac{1}{2}$£¬Çóf£¨x£©µÄµ¥µ÷Çø¼äÓ뼫Сֵ£»
£¨2£©µ±a=0ʱ£¬?x1¡Ê[0£¬2]£¬x2¡Ê[1£¬2]£¬f£¨x1£©¡Ùg£¨x2£©£¬ÇÒg£¨x£©ÔÚ[1£¬2]ÉÏÓм«Öµ£¬ÇókµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

4£®ÔڵȲîÊýÁÐ{an}ÖУ¬a10=$\frac{1}{2}$a14-6£¬ÔòÊýÁÐ{an}µÄǰ11ÏîºÍµÈÓÚ£¨¡¡¡¡£©
A£®132B£®66C£®-132D£®-66

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸