·ÖÎö £¨1£©ÀûÓÃ×ó½¹µãF1ÓëÍÖÔ²EµÄ¶ÌÖáµÄÁ½¸ö¶ËµãÊÇÕýÈý½ÇÐεÄÈý¸ö¶¥µã£¬µã$Q£¨{\sqrt{3}£¬\frac{1}{2}}£©$ÔÚÍÖÔ²EÉÏ£®Áгö·½³Ì×éÇó½âa£¬b¿ÉµÃÍÖÔ²·½³Ì£®
£¨2£©ÉèÖ±Ïßl1µÄ·½³Ìy=tx£¬ÁªÁ¢$\left\{\begin{array}{l}y=tx\\ \frac{x^2}{4}+\frac{y^2}{1}=1\end{array}\right.$£¬Çó½â$|{GH}|=\sqrt{1+{t^2}}•\frac{4}{{\sqrt{4{t^2}+1}}}$£¬${d_{{A_1}-{l_1}}}=|{\frac{2t}{{\sqrt{{t^2}+1}}}}|=\frac{2t}{{\sqrt{{t^2}+1}}}$£¬${d_{{B_1}-{l_1}}}=\frac{1}{{\sqrt{{t^2}+1}}}$£¬ÍƳöËıßÐÎA1GB1HµÄÃæ»ý£¬Çó³ö×î´óÖµ£¬È»ºóÇó½âÖ±Ïß·½³Ì£®
£¨3£©ÉèÖ±Ïßl2µÄ·½³Ìy=k£¨x+c£©½»ÍÖÔ²b2x2+a2y2-a2b2=0ÓÚM£¨x1£¬y1£©£¬N£¨x2£¬y2£©£¬ÀûÓÃΤ´ï¶¨Àí£¬½áºÏ
ÌâÉè$\overrightarrow{PM}=¦Ë\overrightarrow{M{F_1}}$£¬$\overrightarrow{PN}=¦Ì\overrightarrow{N{F_1}}$£¬Çó½â¦Ë+¦Ì¼´¿É£®
½â´ð £¨±¾Ð¡ÌâÂú·Ö13·Ö£©
½â£º£¨1£©×ó½¹µãF1ÓëÍÖÔ²EµÄ¶ÌÖáµÄÁ½¸ö¶ËµãÊÇÕýÈý½ÇÐεÄÈý¸ö¶¥µã£¬µã$Q£¨{\sqrt{3}£¬\frac{1}{2}}£©$ÔÚÍÖÔ²EÉÏ£®
$\left\{\begin{array}{l}c=\sqrt{3}b\\ \frac{3}{a^2}+\frac{1}{{4{b^2}}}=1\\{a^2}-{b^2}={c^2}\end{array}\right.$£¨3·Ö£©
¡à$\left\{\begin{array}{l}{a^2}=4\\{b^2}=1\end{array}\right.$£¬ËùÒÔÍÖÔ²·½³Ì$\frac{x^2}{4}+\frac{y^2}{1}=1$ £¨2·Ö£©
£¨2£©ÉèÖ±Ïßl1µÄ·½³Ìy=tx
ÁªÁ¢$\left\{\begin{array}{l}y=tx\\ \frac{x^2}{4}+\frac{y^2}{1}=1\end{array}\right.$£¬¿ÉÒÔ¼ÆËã$|{GH}|=\sqrt{1+{t^2}}•\frac{4}{{\sqrt{4{t^2}+1}}}$£¨1·Ö£©
${d_{{A_1}-{l_1}}}=|{\frac{2t}{{\sqrt{{t^2}+1}}}}|=\frac{2t}{{\sqrt{{t^2}+1}}}$£¬${d_{{B_1}-{l_1}}}=\frac{1}{{\sqrt{{t^2}+1}}}$£¨1·Ö£©
${S_{ËÄ{A_1}G{B_1}H}}=\frac{1}{2}£¨{\frac{2t+1}{{\sqrt{{t^2}+1}}}}£©•\frac{{4\sqrt{{t^2}+1}}}{{\sqrt{4{t^2}+1}}}$£¬
¡à${S_{ËÄ{A_1}G{B_1}H}}=\frac{{2£¨{2t+1}£©}}{{\sqrt{4{t^2}+1}}}$£¨2·Ö£©
${S^2}_{ËÄ{A_1}G{B_1}H}=4£¨{1+\frac{4}{{4t+\frac{1}{t}}}}£©¡Ü4£¨{1+\frac{4}{{2\sqrt{4t+\frac{1}{t}}}}}£©$£¬
¡à$t=\frac{1}{2}£¬{£¨{{S_{ËÄ{A_1}G{B_1}H}}}£©_{max}}=2\sqrt{2}$£¬
ËùÒÔÖ±Ïßl1µÄ·½³ÌÊÇ$y=\frac{1}{2}x$£¨2·Ö£©
£¨3£©ÉèÖ±Ïßl2µÄ·½³Ìy=k£¨x+c£©½»ÍÖÔ²b2x2+a2y2-a2b2=0ÓÚM£¨x1£¬y1£©£¬N£¨x2£¬y2£©£¬
£¨b2+a2k2£©x2+2a2k2cx+a2k2c2-a2b2=0£¬
${x_1}+{x_2}=-\frac{{2{a^2}{k^2}c}}{{{a^2}{k^2}+{b^2}}}£¬{x_1}{x_2}=\frac{{{a^2}{k^2}{c^2}-{a^2}{b^2}}}{{{a^2}{k^2}+{b^2}}}$£¨2·Ö£©
Ö±Ïßl2½»Ö±Ïßx=-p£¨p£¾0£©ÓÚµãP£¬¸ù¾ÝÌâÉè$\overrightarrow{PM}=¦Ë\overrightarrow{M{F_1}}$£¬$\overrightarrow{PN}=¦Ì\overrightarrow{N{F_1}}$£¬
µÃµ½£¨x1+p£¬yp£©=¦Ë£¨-c-x1£¬0-y1£©£¬£¨x1+p£¬yp£©=¦Ë£¨-c-x2£¬0-y2£©£¬
µÃ$¦Ë=-\frac{{{x_1}+p}}{{{x_1}+c}}$£¬$¦Ì=-\frac{{{x_2}+p}}{{{x_2}+c}}$ £¨2·Ö£©
$¦Ë+¦Ì=-£¨{\frac{{{x_1}+p}}{{{x_1}+c}}+\frac{{{x_2}+p}}{{{x_2}+c}}}£©=-\frac{{£¨{{x_1}+p}£©£¨{{x_2}+c}£©+£¨{{x_2}+p}£©£¨{{x_1}+c}£©}}{{£¨{{x_1}+c}£©£¨{{x_2}+c}£©}}$
=$-\frac{{2{x_1}{x_2}+£¨{p+c}£©£¨{{x_1}+{x_2}}£©+2pc}}{{{x_1}{x_2}+c£¨{{x_1}+{x_2}}£©+{c^2}}}$
=-$\frac{\frac{2{a}^{2}{k}^{2}{c}^{2}-2{a}^{2}{b}^{2}}{{a}^{2}{k}^{2}+{b}^{2}}-£¨p+c£©\frac{2{a}^{2}{k}^{2}c}{{a}^{2}{k}^{2}+{b}^{2}}+2pc}{\frac{{a}^{2}{k}^{2}{c}^{2}-{a}^{2}{b}^{2}}{{a}^{2}{k}^{2}+{b}^{2}}-\frac{2{a}^{2}{k}^{2}c}{{a}^{2}{k}^{2}+{b}^{2}}+{c}^{2}}$
=-$\frac{2pc{b}^{2}-2{a}^{2}{b}^{2}}{-{b}^{4}}$
=$\frac{2pc-2{a}^{2}}{{b}^{2}}$
=$\frac{{2£¨{p\sqrt{{a^2}-{b^2}}-{a^2}}£©}}{b^2}$£¨3·Ö£©
¦Ë+¦ÌµÄֵΪ£º$\frac{{2£¨{p\sqrt{{a^2}-{b^2}}-{a^2}}£©}}{b^2}$½áÂÛ£¨1·Ö£©
µãÆÀ ±¾Ì⿼²éÍÖÔ²·½³ÌµÄÇ󷨣¬Ö±ÏßÓëÍÖÔ²µÄλÖùØÏµµÄÓ¦Ó㬿¼²éת»¯Ë¼ÏëÒÔ¼°¼ÆËãÄÜÁ¦£®
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
| x £¨g£© | 5 | 10 | 15 | 20 | 25 | 30 |
| y £¨cm£© | 7.25 | 8.12 | 8.95 | 9.90 | 10.9 | 11.8 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 24¦Ð+48 | B£® | $24¦Ð+90+6\sqrt{41}$ | C£® | 48¦Ð+48 | D£® | $24¦Ð+66+6\sqrt{41}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 1 | B£® | -1 | C£® | -3 | D£® | 3 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 3¡Á223 | B£® | 3¡Á224 | C£® | 223 | D£® | 224 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 132 | B£® | 66 | C£® | -132 | D£® | -66 |
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com