精英家教网 > 高中数学 > 题目详情
4.已知函数f(x)=ax+b(a>0,且a≠1).若f(x)的图象如图所示,
(1)求a,b的值;
(2)记g(x)=f(x)-logax,判断g(x)在定义域内是否存在零点,若存在,请求出零点,若不存在,请说明理由.

分析 (1)由图象得,点(1,0),(0,-1)在函数f(x)的图象上,代值计算即可,
(2)分别画出y=2x-2,y=log2x的图象,由图象可得函数的零点.

解答 解:(1)由图象得,点(1,0),(0,-1)在函数f(x)的图象上,
所以$\left\{\begin{array}{l}{a+b=0}\\{1+b=-1}\end{array}\right.$,
解得$\left\{\begin{array}{l}a=2\\ b=-2\end{array}$
∴f(x)=2x-2.
(2)g(x)=f(x)-logax=2x-2-log2x,其定义域为(0,+∞)
令g(x)=2x-2-log2x=0,
则2x-2=log2x,
分别画出y=2x-2,y=log2x的图象,如图所示,

由图象可得,y=2x-2,y=log2x的图象只有一个交点,即x=1,
故存在函数的零点,且零点为1

点评 本题考查了函数的零点存在定理和指数函数和对数函数的定义,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.如图,四边形ABCD中,∠BAD=120°,∠B=∠D=90°,在BC、CD上分别找一点M、N,使△AMN周长最小时,则∠AMN+∠ANM的度数为(  )
A.140°B.130°C.120°D.110°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.某地为增强居民的传统文化意识,活跃节日氛围,在元宵节举办了猜灯谜比赛,现从参加比赛的选手中随机抽取200名后按年龄分组:第1组[20,25),第2组[25,30),第3组[30,35),第4组[35,40),第5组[40,45),得到的频率分布直方图如图所示.
(1)若从第3,4,5组中用分层抽样的方法抽取12名选手参加传统知识问答比赛,则应从第3,4,5组各抽取多少名选手?
(2)在(1)的条件下,该地决定在第4,5组的选手中随机抽取2名选手介绍比赛感想,求第5组至少有一名选手被抽中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若函数f(x)=x3-tx2+3x在区间[1,4]上单调递增,则实数t的取值范围是(  )
A.$(-∞,\frac{51}{8}]$B.(-∞,3]C.$[\frac{51}{8},+∞)$D.[3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知f(x)为定义在R行的可导函数,且f(x)<f'(x)对于x∈R恒成立,且e为自然对数的底数,则下面正确的是(  )
A.f(1)>ef(0),f(2016)>e2016f(0)B.f(1)<ef(0),f(2016)>e2016f(0)
C.f(1)>ef(0),f(2016)<e2016f(0)D.f(1)<ef(0),f(2016)>e2016f(0)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设平面上的伸缩变换的坐标表达式为$\left\{\begin{array}{l}{x′=\frac{1}{2}x}\\{y′=3y}\end{array}\right.$,则在这一坐标变换下正弦曲线y=sinx的方程变为y=3sin2x.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.下列命题中正确的有(  )
①设有一个回归方程$\stackrel{∧}{y}$=2-3x,变量x增加一个单位时,y平均增加3个单位;
②命题p:“?x0∈R,x02-x0-1>0”的否定¬p“?x∈R,x2-x-1≤0”;
③残差平方和越小的模型,拟合的效果越好;
④用相关指数R2=1-$\frac{\sum_{i=1}^{n}({y}_{i}-\stackrel{∧}{{y}_{i}})^{2}}{\sum_{i=1}^{n}({y}_{i}-\overline{y})^{2}}$来刻画回归效果,R2的值越小,说明模型的拟合效果越好.
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.函数$y=\sqrt{2x+1}+ln(3-4x)$的定义域为(  )
A.$(-\frac{1}{2},\frac{3}{4})$B.$[-\frac{1}{2},\frac{3}{4}]$C.$(-∞,\frac{1}{2}]∪(\frac{3}{4},+∞)$D.$[-\frac{1}{2},\frac{3}{4})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知椭圆E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$,左焦点是F1
(1)若左焦点F1与椭圆E的短轴的两个端点是正三角形的三个顶点,点$Q({\sqrt{3},\frac{1}{2}})$在椭圆E上.求椭圆E的方程;
(2)过原点且斜率为t(t>0)的直线l1与(1)中的椭圆E交于不同的两点G,H,设B1(0,1),A1(2,0),求四边形A1GB1H的面积取得最大值时直线l1的方程;
(3)过左焦点F1的直线l2交椭圆E于M,N两点,直线l2交直线x=-p(p>0)于点P,其中p是常数,设$\overrightarrow{PM}=λ\overrightarrow{M{F_1}}$,$\overrightarrow{PN}=μ\overrightarrow{N{F_1}}$,计算λ+μ的值(用p,a,b的代数式表示).

查看答案和解析>>

同步练习册答案