精英家教网 > 高中数学 > 题目详情
16.下列命题中正确的有(  )
①设有一个回归方程$\stackrel{∧}{y}$=2-3x,变量x增加一个单位时,y平均增加3个单位;
②命题p:“?x0∈R,x02-x0-1>0”的否定¬p“?x∈R,x2-x-1≤0”;
③残差平方和越小的模型,拟合的效果越好;
④用相关指数R2=1-$\frac{\sum_{i=1}^{n}({y}_{i}-\stackrel{∧}{{y}_{i}})^{2}}{\sum_{i=1}^{n}({y}_{i}-\overline{y})^{2}}$来刻画回归效果,R2的值越小,说明模型的拟合效果越好.
A.1个B.2个C.3个D.4个

分析 ①回归方程$\stackrel{∧}{y}$=2-3x,变量x增加一个单位时,y平均减少3个单位,可判断①错误;
②写出命题p:“?x0∈R,x02-x0-1>0”的否定¬p:“?x∈R,x2-x-1≤0”,可判断②正确;
③由残差平方和越小的模型,拟合的效果越好,可判断③正确;
④用相关指数R2=1-$\frac{\sum_{i=1}^{n}({y}_{i}-\stackrel{∧}{{y}_{i}})^{2}}{\sum_{i=1}^{n}({y}_{i}-\overline{y})^{2}}$来刻画回归效果,R2的值越大,说明模型的拟合效果越好,可判断④错误.

解答 解:对于①,回归方程$\stackrel{∧}{y}$=2-3x,变量x增加一个单位时,y平均减少3个单位,故①错误;
对于②,命题p:“?x0∈R,x02-x0-1>0”的否定¬p:“?x∈R,x2-x-1≤0”,故②正确;
对于③,残差平方和越小的模型,拟合的效果越好,故③正确;
对于④,用相关指数R2=1-$\frac{\sum_{i=1}^{n}({y}_{i}-\stackrel{∧}{{y}_{i}})^{2}}{\sum_{i=1}^{n}({y}_{i}-\overline{y})^{2}}$来刻画回归效果,R2越大,说明模型的拟合效果越好,故④不正确.
综上所述,以上命题中正确的有两个,
故选:B.

点评 本题考查命题的真假判断与应用,考查两个变量的线性回归方程及用来描述拟合效果好坏的量,命题及其否定的关系,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.若x>1,那么1og2x+31ogx4的最小值是2$\sqrt{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设a>0,f(x)=$\frac{2x}{2+x}$,令a1=1,an+1=f(an),n∈N*
(1)写出a2,a3,a4的值,并猜出数列{an}的通项公式;
(2)用数学归纳法证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=ax+b(a>0,且a≠1).若f(x)的图象如图所示,
(1)求a,b的值;
(2)记g(x)=f(x)-logax,判断g(x)在定义域内是否存在零点,若存在,请求出零点,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设数列{an}的前n项和为Sn,a1=1,an+1=3Sn+1,n∈N*
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=n+an,求Tn=b1+b2+…+bn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.计算:$\root{5}{2}$×(4${\;}^{-\frac{2}{5}}$)-1+lg$\sqrt{1000}$-sin270°=$\frac{9}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.i表示虚数单位,则1+i+i2+…+i2005=1+i.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.一个半径为r的扇形,若它的周长等于它所在圆的周长的一半,则扇形所对圆心角的度数为(π-2)rad.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设Sn为正项数列{an}的前n项和,a2=3,Sn+1(2Sn+1+n-4Sn)=2nSn,则a25等于(  )
A.3×223B.3×224C.223D.224

查看答案和解析>>

同步练习册答案