精英家教网 > 高中数学 > 题目详情
1.计算:$\root{5}{2}$×(4${\;}^{-\frac{2}{5}}$)-1+lg$\sqrt{1000}$-sin270°=$\frac{9}{2}$.

分析 根据指数幂,对数运算法则和特殊三角函数值可得答案.

解答 解:$\root{5}{2}$×(4${\;}^{-\frac{2}{5}}$)-1+lg$\sqrt{1000}$-sin270°
=${2}^{\frac{1}{5}}$×(${2}^{-\frac{4}{5}}$)-1+lg$100{0}^{\frac{1}{2}}$+1
=${2}^{\frac{1}{5}}$×${2}^{\frac{4}{5}}$+$\frac{3}{2}+1$
=2+$\frac{3}{2}+1$
=$\frac{9}{2}$
故答案为$\frac{9}{2}$

点评 本题考查了指数幂,对数运算法则和特殊三角函数值计算.属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.下列各式中正确的个数是(  )
①(x7)′=7x6;    ②(x-1)′=x-2;      ③($\frac{1}{\sqrt{x}}$)′=-$\frac{1}{2}$x${\;}^{-\frac{3}{2}}$;     ④($\root{5}{{x}^{2}}$)′=$\frac{2}{5}$x${\;}^{-\frac{3}{5}}$;     ⑤(cosx)′=-sinx;
⑥(cos2)′=-sin2.
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若函数f(x)=x3-tx2+3x在区间[1,4]上单调递增,则实数t的取值范围是(  )
A.$(-∞,\frac{51}{8}]$B.(-∞,3]C.$[\frac{51}{8},+∞)$D.[3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设平面上的伸缩变换的坐标表达式为$\left\{\begin{array}{l}{x′=\frac{1}{2}x}\\{y′=3y}\end{array}\right.$,则在这一坐标变换下正弦曲线y=sinx的方程变为y=3sin2x.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.下列命题中正确的有(  )
①设有一个回归方程$\stackrel{∧}{y}$=2-3x,变量x增加一个单位时,y平均增加3个单位;
②命题p:“?x0∈R,x02-x0-1>0”的否定¬p“?x∈R,x2-x-1≤0”;
③残差平方和越小的模型,拟合的效果越好;
④用相关指数R2=1-$\frac{\sum_{i=1}^{n}({y}_{i}-\stackrel{∧}{{y}_{i}})^{2}}{\sum_{i=1}^{n}({y}_{i}-\overline{y})^{2}}$来刻画回归效果,R2的值越小,说明模型的拟合效果越好.
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知-6<a<8,2<b<3,分别求2a+b,a-b,$\frac{a}{b}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.函数$y=\sqrt{2x+1}+ln(3-4x)$的定义域为(  )
A.$(-\frac{1}{2},\frac{3}{4})$B.$[-\frac{1}{2},\frac{3}{4}]$C.$(-∞,\frac{1}{2}]∪(\frac{3}{4},+∞)$D.$[-\frac{1}{2},\frac{3}{4})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知$|{\overrightarrow{a}}|=4,\;|{\overrightarrow{b}}|=5$,且$\overrightarrow{a}⊥\overrightarrow{b}$,则$\overrightarrow{a}•\overrightarrow{b}$=(  )
A.0B.10C.20D.-20

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AA1=2,AC⊥BC,D是线段AB上一点.
(1)确定D的位置,使得平面B1CD⊥平面ABB1A1
(2)若AC1∥平面B1CD,设二面角D-CB1-B的大小为θ,求证θ<$\frac{π}{3}$.

查看答案和解析>>

同步练习册答案