精英家教网 > 高中数学 > 题目详情
11.下列各式中正确的个数是(  )
①(x7)′=7x6;    ②(x-1)′=x-2;      ③($\frac{1}{\sqrt{x}}$)′=-$\frac{1}{2}$x${\;}^{-\frac{3}{2}}$;     ④($\root{5}{{x}^{2}}$)′=$\frac{2}{5}$x${\;}^{-\frac{3}{5}}$;     ⑤(cosx)′=-sinx;
⑥(cos2)′=-sin2.
A.3B.4C.5D.6

分析 根据基本导数公式求导即可.

解答 解:①(x7)′=7x6;    ②(x-1)′=-x-2;      ③($\frac{1}{\sqrt{x}}$)′=-$\frac{1}{2}$x${\;}^{-\frac{3}{2}}$;     ④($\root{5}{{x}^{2}}$)′=$\frac{2}{5}$x${\;}^{-\frac{3}{5}}$;     ⑤(cosx)′=-sinx;⑥(cos2)′=0,
故正确的个数为4个,
故选:B

点评 本题考查了基本导数公式,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.已知a,b,c∈(0,+∞),则下列三个数$a+\frac{4}{b}$,$b+\frac{9}{c}$,$c+\frac{16}{a}$(  )
A.都大于6B.至少有一个不大于6
C.都小于6D.至少有一个不小于6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.在用反证法证明“已知p3+q3=2,求证:p+q≤2”时的反设为p+q>2,得出的矛盾为(q-1)2<0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,在梯形PMNQ中,PQ∥MN,对角线PN和MQ相交于点O,并把梯形分成四部分,记这四部分的面积分别为S1,S2,S3,S4.试判断S1+S2和S3+S4的大小关系,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若x>1,那么1og2x+31ogx4的最小值是2$\sqrt{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在△ABC中,角A,B,C所对的边长分别为a、b、c,且a•cosB+b•cosA=2c•cosB.
(1)求角B
(2)若$M=sinA({\sqrt{3}cosA-sinA})$,求M的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.若方程x2+y2+2mx-2y+m2+5m=0表示圆,求:
(1)实数m的取值范围;
(2)圆心坐标和半径.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.给出下面类比推理命题(其中R为实数集,C为复数集),正确的是(  )
A.若a,b∈R,则a-b>0⇒a>b,推出:若a,b∈C,则a-b>0⇒a>b
B.若a,b∈R,则a2+b2=0⇒a=b=0,推出:若a,b∈C,则a2+b2=0⇒a=b=0
C.若a,b∈R,则a-b=0⇒a=b,推出:若a,b∈C,则a-b=0⇒a=b
D.若x∈R,则|x|<1⇒-1<x<1,推出:若x∈C,则|x|<1⇒-1<x<1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.计算:$\root{5}{2}$×(4${\;}^{-\frac{2}{5}}$)-1+lg$\sqrt{1000}$-sin270°=$\frac{9}{2}$.

查看答案和解析>>

同步练习册答案