精英家教网 > 高中数学 > 题目详情
3.若方程x2+y2+2mx-2y+m2+5m=0表示圆,求:
(1)实数m的取值范围;
(2)圆心坐标和半径.

分析 (1)利用圆的一般方程可得 D2+E2-4F>0,由此求得m的取值范围.
(2)将圆的方程写成标准方程的形式,可得圆心坐标和半径.

解答 解:(1)∵方程x2+y2+2mx-2y+m2+5m=0表示圆,
∴D2+E2-4F=(2m)2+(-2)2-4(m2+5m)>0,
即4m2+4-4m2-20m>0,解得m<$\frac{1}{5}$,
故m的取值范围为(-∞,$\frac{1}{5}$).
(2)将方程x2+y2+2mx-2y+m2+5m=0写成标准方程为(x+m)2+(y-1)2=1-5m,
可得圆心坐标为(-m,1),半径r=$\sqrt{1-5m}$.

点评 本题主要考查圆的一般方程,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.用数字1,2,3,4,5可以组成没有重复数字,并且比20000大的五位偶数共有36个.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.如图,四边形ABCD中,∠BAD=120°,∠B=∠D=90°,在BC、CD上分别找一点M、N,使△AMN周长最小时,则∠AMN+∠ANM的度数为(  )
A.140°B.130°C.120°D.110°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.下列各式中正确的个数是(  )
①(x7)′=7x6;    ②(x-1)′=x-2;      ③($\frac{1}{\sqrt{x}}$)′=-$\frac{1}{2}$x${\;}^{-\frac{3}{2}}$;     ④($\root{5}{{x}^{2}}$)′=$\frac{2}{5}$x${\;}^{-\frac{3}{5}}$;     ⑤(cosx)′=-sinx;
⑥(cos2)′=-sin2.
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=(2-a)lnx+$\frac{1}{x}$+2ax(a≤0).
(1)当a=0时,求f(x)在x=1处的切线方程;
(2)当a<0时,讨论f(x)的单调性;
(3)若?a∈(-3,-2),x1,x2∈[1,3],有(m+ln3)a-2ln3>|f(x1)-f(x2)|,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.一质点按规律s=2t3运动,则其在时间段[1,2]内的平均速度为14m/s,在t=1时的瞬时速度为6m/s.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.某地为增强居民的传统文化意识,活跃节日氛围,在元宵节举办了猜灯谜比赛,现从参加比赛的选手中随机抽取200名后按年龄分组:第1组[20,25),第2组[25,30),第3组[30,35),第4组[35,40),第5组[40,45),得到的频率分布直方图如图所示.
(1)若从第3,4,5组中用分层抽样的方法抽取12名选手参加传统知识问答比赛,则应从第3,4,5组各抽取多少名选手?
(2)在(1)的条件下,该地决定在第4,5组的选手中随机抽取2名选手介绍比赛感想,求第5组至少有一名选手被抽中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若函数f(x)=x3-tx2+3x在区间[1,4]上单调递增,则实数t的取值范围是(  )
A.$(-∞,\frac{51}{8}]$B.(-∞,3]C.$[\frac{51}{8},+∞)$D.[3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.函数$y=\sqrt{2x+1}+ln(3-4x)$的定义域为(  )
A.$(-\frac{1}{2},\frac{3}{4})$B.$[-\frac{1}{2},\frac{3}{4}]$C.$(-∞,\frac{1}{2}]∪(\frac{3}{4},+∞)$D.$[-\frac{1}{2},\frac{3}{4})$

查看答案和解析>>

同步练习册答案