精英家教网 > 高中数学 > 题目详情
12.在用反证法证明“已知p3+q3=2,求证:p+q≤2”时的反设为p+q>2,得出的矛盾为(q-1)2<0.

分析 利用反证法与放缩法及其定义进行分析求解.

解答 解:(1)用反证法证明时,假设命题为假,应为全面否定.
所以p+q≤2的假命题应为p+q>2.
假设p+q>2,则p>2-q,
p3>(2-q)3
p3+q3>8-12q+6q2
∵p3+q3=2,
∴2>8-12q+6q2
即q2-2q+1<0,
∴(q-1)2<0,
∵不论q为何值,(q-1)2都大于等于0,
即假设不成立,
∴p+q≤2.
故答案为p+q>2,(q-1)2<0

点评 此题主要考查反证法的定义及其应用,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.曲线${y^2}=4\sqrt{2}x$上一点M到它的焦点F的距离为$4\sqrt{2}$,O为坐标原点,则△MFO的面积为2$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.用数字1,2,3,4,5可以组成没有重复数字,并且比20000大的五位偶数共有36个.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.我国古代名著《九章算术》用“更相减损术”求两个正整数的最大公约数是一个伟大创举.这个伟大创举与我国古老的算法-“辗转相除法”实质一样.如图的程序框图即源于“辗转相除法”,当输入a=3051,b=1008时,输出的a=(  )
A.6B.9C.12D.18

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.为研究男女同学空间想象能力的差异,孙老师从高一年级随机选取了20名男生、20名女生,进行空间图形识别测试,得到成绩茎叶图如下,假定成绩大于等于80分的同学为“空间想象能力突出”,低于80分的同学为“空间想象能力正常”.
(1)完成下面2×2列联表,并判断是否有90%的把握认为“空间想象能力突出”与性别有关;
空间想象能力突出空间想象能力正常合计
男生
女生
合计
(2)从“空间想象能力突出”的同学中随机选取男生2名、女生2名,记其中成绩超过90分的人数为ξ,求随机变量ξ的分布列和数学期望.
下面公式及临界值表仅供参考:${X^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$
P(X2≥k)0.1000.0500.010
k2.7063.8416.635

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.下列叙述:
①函数$f(x)=sin(2x-\frac{π}{3})$是奇函数;
②函数$f(x)=cos(2x-\frac{π}{3})$的一条对称轴方程为$x=-\frac{π}{3}$;
③函数$f(x)=\sqrt{2}sin(2x+\frac{π}{4})$,$x∈[0,\frac{π}{2}]$,则f(x)的值域为$[0,\sqrt{2}]$;
④函数$f(x)=\frac{cosx+3}{cosx}$,$x∈(-\frac{π}{2},\frac{π}{2})$有最小值,无最大值.
所有正确结论的序号是②④.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.如图,四边形ABCD中,∠BAD=120°,∠B=∠D=90°,在BC、CD上分别找一点M、N,使△AMN周长最小时,则∠AMN+∠ANM的度数为(  )
A.140°B.130°C.120°D.110°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.下列各式中正确的个数是(  )
①(x7)′=7x6;    ②(x-1)′=x-2;      ③($\frac{1}{\sqrt{x}}$)′=-$\frac{1}{2}$x${\;}^{-\frac{3}{2}}$;     ④($\root{5}{{x}^{2}}$)′=$\frac{2}{5}$x${\;}^{-\frac{3}{5}}$;     ⑤(cosx)′=-sinx;
⑥(cos2)′=-sin2.
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若函数f(x)=x3-tx2+3x在区间[1,4]上单调递增,则实数t的取值范围是(  )
A.$(-∞,\frac{51}{8}]$B.(-∞,3]C.$[\frac{51}{8},+∞)$D.[3,+∞)

查看答案和解析>>

同步练习册答案