精英家教网 > 高中数学 > 题目详情
17.下列叙述:
①函数$f(x)=sin(2x-\frac{π}{3})$是奇函数;
②函数$f(x)=cos(2x-\frac{π}{3})$的一条对称轴方程为$x=-\frac{π}{3}$;
③函数$f(x)=\sqrt{2}sin(2x+\frac{π}{4})$,$x∈[0,\frac{π}{2}]$,则f(x)的值域为$[0,\sqrt{2}]$;
④函数$f(x)=\frac{cosx+3}{cosx}$,$x∈(-\frac{π}{2},\frac{π}{2})$有最小值,无最大值.
所有正确结论的序号是②④.

分析 ①根据奇函数的定义判断即可;
②根据余弦函数图象的性质判断,对称轴过函数的最值点;
③根据正弦函数图象求解即可;
④函数可化为$f(x)=\frac{cosx+3}{cosx}$=1+$\frac{3}{cosx}$,根据定义域求出函数的值域即可.

解答 解:①函数$f(x)=sin(2x-\frac{π}{3})$,显然f(-x)≠f(x),不是奇函数,故错误;
②f(-$\frac{π}{3}$)=-1,$f(x)=cos(2x-\frac{π}{3})$的一条对称轴方程为$x=-\frac{π}{3}$,故正确;
③函数$f(x)=\sqrt{2}sin(2x+\frac{π}{4})$,$x∈[0,\frac{π}{2}]$,2x+$\frac{π}{4}$∈[$\frac{π}{4}$,$\frac{5π}{4}$],则f(x)的值域为[-1,$\sqrt{2}$],故错误;
④函数$f(x)=\frac{cosx+3}{cosx}$=1+$\frac{3}{cosx}$,$x∈(-\frac{π}{2},\frac{π}{2})$,f(x)≥4,有最小值,无最大值,故正确.
故答案为②④.

点评 本题考查了函数的奇偶性,三角函数图象的性质和函数值域的求法.属于基础题型,应熟练掌握.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.设x.y满足约束条件$\left\{\begin{array}{l}{2x+y-3≤0}\\{2x-2y-1≤0}\\{x-a≥0}\end{array}\right.$,若$\frac{x-y}{x+y}$的最大值为2,则a的值为(  )
A.$\frac{1}{2}$B.$\frac{1}{4}$C.$\frac{3}{8}$D.$\frac{5}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在△ABC中,已知$\overrightarrow{AB}$与$\overrightarrow{BC}$的夹角为150°,|$\overrightarrow{AC}$|=2,则|$\overrightarrow{AB}$|的取值范围是(0,4].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设$(1-x){(2x+1)^5}={a_0}+{a_1}x+{a_2}{x^2}+…+{a_5}{x^6}$,则a2等于30.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.在用反证法证明“已知p3+q3=2,求证:p+q≤2”时的反设为p+q>2,得出的矛盾为(q-1)2<0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知实数a≠b,且满足(a+1)2=3-3(a+1),3(b+1)=3-(b+1)2,则b$\sqrt{\frac{b}{a}}$+a$\sqrt{\frac{a}{b}}$的值为(  )
A.-23B.23C.13D.-13

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,在梯形PMNQ中,PQ∥MN,对角线PN和MQ相交于点O,并把梯形分成四部分,记这四部分的面积分别为S1,S2,S3,S4.试判断S1+S2和S3+S4的大小关系,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在△ABC中,角A,B,C所对的边长分别为a、b、c,且a•cosB+b•cosA=2c•cosB.
(1)求角B
(2)若$M=sinA({\sqrt{3}cosA-sinA})$,求M的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设A={θ|θ为锐角},B={θ|θ为小于90°的角},C={θ|θ为第一象限的角},D={θ|θ为小于90°的正角},则下列等式中成立的是(  )
A.A=BB.B=CC.A=CD.A=D

查看答案和解析>>

同步练习册答案