精英家教网 > 高中数学 > 题目详情
7.设x.y满足约束条件$\left\{\begin{array}{l}{2x+y-3≤0}\\{2x-2y-1≤0}\\{x-a≥0}\end{array}\right.$,若$\frac{x-y}{x+y}$的最大值为2,则a的值为(  )
A.$\frac{1}{2}$B.$\frac{1}{4}$C.$\frac{3}{8}$D.$\frac{5}{9}$

分析 分别作出不等式2x+y-3≤0和2x-2y-1≤0的公共区域,求得交点,确定a的范围,作出不等式组的可行域,求得交点A,B的坐标,可得OA,OB的斜率,可得$\frac{y}{x}$的范围,由$\frac{x-y}{x+y}$=$\frac{1-\frac{y}{x}}{1+\frac{y}{x}}$=-1+$\frac{2}{1+\frac{y}{x}}$,代入OA,OB的斜率,解方程可得a的值,检验即可得到a的值.

解答 解:分别作出直线2x+y-3=0和直线2x-2y-1=0,
可得不等式2x+y-3≤0和2x-2y-1≤0的公共区域,
求得交点为($\frac{7}{6}$,$\frac{2}{3}$),由题意可得a<$\frac{7}{6}$,
作出不等式组的可行域,如右图.
求得A(a,3-2a),B(a,$\frac{2a-1}{2}$),
则$\frac{y}{x}$表示可行域内的点与原点的斜率,
可得范围为[kOB,kOA],
即为[$\frac{2a-1}{2a}$,$\frac{3-2a}{a}$].
由$\frac{x-y}{x+y}$的最大值为2,
又$\frac{x-y}{x+y}$=$\frac{1-\frac{y}{x}}{1+\frac{y}{x}}$=-1+$\frac{2}{1+\frac{y}{x}}$,
由图象可得kOB<0,kOA>0,
由-1+$\frac{2}{1+\frac{2a-1}{2a}}$=2,解得a=$\frac{3}{8}$<$\frac{7}{6}$,成立;
由-1+$\frac{2}{1+\frac{3-2a}{a}}$=2,解得a=$\frac{9}{5}$>$\frac{7}{6}$,不成立.
综上可得a=$\frac{3}{8}$.
故选:C.

点评 平面区域的最值问题是线性规划问题中一类重要题型,在解题时,关键是正确地画出平面区域,分析表达式的几何意义,然后结合数形结合的思想,分析图形,找出满足条件的点的坐标,即可求出答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.在平面直角坐标系中,直线l的参数方程为$\left\{\begin{array}{l}x=tcosα\\ y=1+tsinα\end{array}\right.$,其中t为参数,$α∈(0,\frac{π}{2})$,再以坐标原点O为极点,以x轴正半轴为极轴,建立极坐标系,曲线C的极坐标方程为ρsin2θ+2sinθ=ρ,其中ρ≥0,θ∈R,直线l与曲线C交于P,Q两点.
(1)求$\overrightarrow{OP}•\overrightarrow{OQ}$的值;
(2)已知点A(0,1),且|AP|=2|AQ|,求直线l的普通方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知x,y满足$\left\{\begin{array}{l}{x≥1}\\{x+y≤4}\\{x-y+t≤0}\end{array}\right.$,记目标函数z=2x+y的最大值为7,则t=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设点(9,3)在函数f(x)=loga(x-1)(a>0,a≠1)的图象上,则f(x)的反函数f-1(x)=2x+1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.曲线${y^2}=4\sqrt{2}x$上一点M到它的焦点F的距离为$4\sqrt{2}$,O为坐标原点,则△MFO的面积为2$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知“三段论”中的三段:
①$y=2sin\frac{1}{2}x+cos\frac{1}{2}x$可化为y=Acos(ωx+φ);
②y=Acos(ωx+φ)是周期函数;
③$y=2sin\frac{1}{2}x+cos\frac{1}{2}x$是周期函数,
其中为小前提的是(  )
A.B.C.D.①和②

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.抛物线y=x2-4x+3与x轴围成的封闭图形的面积为(  )
A.$\frac{2}{3}$B.$\frac{4}{3}$C.2D.$\frac{8}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.双曲线$\frac{x^2}{2}-\frac{y^2}{4}=1$的顶点到其渐近线的距离等于$\frac{2\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.下列叙述:
①函数$f(x)=sin(2x-\frac{π}{3})$是奇函数;
②函数$f(x)=cos(2x-\frac{π}{3})$的一条对称轴方程为$x=-\frac{π}{3}$;
③函数$f(x)=\sqrt{2}sin(2x+\frac{π}{4})$,$x∈[0,\frac{π}{2}]$,则f(x)的值域为$[0,\sqrt{2}]$;
④函数$f(x)=\frac{cosx+3}{cosx}$,$x∈(-\frac{π}{2},\frac{π}{2})$有最小值,无最大值.
所有正确结论的序号是②④.

查看答案和解析>>

同步练习册答案