精英家教网 > 高中数学 > 题目详情
15.设点(9,3)在函数f(x)=loga(x-1)(a>0,a≠1)的图象上,则f(x)的反函数f-1(x)=2x+1.

分析 根据点(9,3)在函数f(x)=loga(x-1)(a>0,a≠1)的图象上,求解出a,把x用y表示出来,把x与y互换可得f(x)的反函数f-1(x).

解答 解:点(9,3)在函数f(x)=loga(x-1)(a>0,a≠1)的图象上,
∴loga(9-1)=3,
可得:a=2,
则函数f(x)=y=log2(x-1)
那么:x=2y+1.
把x与y互换可得:y=2x+1
∴f(x)的反函数f-1(x)=2x+1.
故答案为:2x+1.

点评 本题考查了反函数的求法,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.已知三棱锥A-BCD中,$AB=CD=\sqrt{2}$,$AC=BC=AD=BD=\sqrt{3}$,且各顶点均在同一个球面上,则该球的体积为(  )
A.$\frac{32π}{3}$B.C.D.$\frac{4π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.点F1、F2分别是双曲线${x^2}-\frac{y^2}{3}=1$的左、右焦点,点P在双曲线上,则△PF1F2的内切圆半径r的取值范围是(  )
A.$({0,\sqrt{3}})$B.(0,2)C.$({0,\sqrt{2}})$D.(0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在等差数列{an}中,前n项和为Sn,$\frac{S_2}{S_4}=\frac{1}{3}$,则$\frac{S_4}{S_8}$等于(  )
A.$\frac{3}{10}$B.$\frac{1}{8}$C.$\frac{1}{9}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知圆C的方程为x2+y2=4,点P是圆C上任意一动点,过点P作x轴的垂线,垂足为H,且$\overrightarrow{OQ}$=$\frac{1}{2}$($\overrightarrow{OP}$+$\overrightarrow{OH}$),动点Q的轨迹为E.轨迹E与x轴、y轴的正半轴分别交于点A和点B;直线y=kx(k>0)与直线AB相交于点D,与轨迹E相交于M、N两点.
(Ⅰ)求轨迹E的方程;
(Ⅱ)求四边形AMBN面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知F为双曲线C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的右焦点,l1,l2为C的两条渐近线,点A在l1上,且FA⊥l1,点B在l2上,且FB∥l1,若|FA|=$\frac{4}{5}$|FB|,则双曲线C的离心率为(  )
A.$\frac{{\sqrt{5}}}{2}$或$\sqrt{5}$B.$\frac{{\sqrt{5}}}{2}$或$\frac{{3\sqrt{5}}}{2}$C.$\frac{{\sqrt{5}}}{2}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设x.y满足约束条件$\left\{\begin{array}{l}{2x+y-3≤0}\\{2x-2y-1≤0}\\{x-a≥0}\end{array}\right.$,若$\frac{x-y}{x+y}$的最大值为2,则a的值为(  )
A.$\frac{1}{2}$B.$\frac{1}{4}$C.$\frac{3}{8}$D.$\frac{5}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知数列{an}的前n项和为Sn,a1=a,${a_2}={a^2}$,an+2=an+1-an,S56=6,则a=-3或2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设$(1-x){(2x+1)^5}={a_0}+{a_1}x+{a_2}{x^2}+…+{a_5}{x^6}$,则a2等于30.

查看答案和解析>>

同步练习册答案