精英家教网 > 高中数学 > 题目详情
4.已知数列{an}的前n项和为Sn,a1=a,${a_2}={a^2}$,an+2=an+1-an,S56=6,则a=-3或2.

分析 由an+1=an-an-1(n≥2),得an+6=an+5-an+4=an+4-an+3-an+4=-an+3=-(an+2-an+1)=-(an+1-an-an+1)=an,所以6为数列{an}的周期,可得S6=0.于是S56=S54+a+a2=a+a2=6,解得a.

解答 解:由an+1=an-an-1(n≥2),得
an+6=an+5-an+4=an+4-an+3-an+4=-an+3=-(an+2-an+1)=-(an+1-an-an+1)=an
所以6为数列{an}的周期,
又a3=a2-a1=a2-a,a4=a3-a2=-a,a5=a4-a3=-a2,a6=a5-a4=a-a2
∴S6=0.
∵S56=6,∴S56=S54+a+a2=a+a2=6,解得a=-3或2.
故答案为:-3或2.

点评 本题考查了数列递推关系、数列的周期性,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.如图,斜四棱柱ABCD-A1B1C1D1的底面是边长为$\sqrt{3}$的正方形,侧面A1ABB1⊥底面ABCD,AA1=2,∠B1BA=30°.
(1)求证:平面AB1C⊥平面BDC1
(2)棱AA1上是否存在一点M,使平面MBC1与平面BDC1所成锐二面角的余弦值为$\frac{1}{8}$,若存在,求比值$\frac{AM}{{A{A_1}}}$,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设点(9,3)在函数f(x)=loga(x-1)(a>0,a≠1)的图象上,则f(x)的反函数f-1(x)=2x+1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知“三段论”中的三段:
①$y=2sin\frac{1}{2}x+cos\frac{1}{2}x$可化为y=Acos(ωx+φ);
②y=Acos(ωx+φ)是周期函数;
③$y=2sin\frac{1}{2}x+cos\frac{1}{2}x$是周期函数,
其中为小前提的是(  )
A.B.C.D.①和②

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.抛物线y=x2-4x+3与x轴围成的封闭图形的面积为(  )
A.$\frac{2}{3}$B.$\frac{4}{3}$C.2D.$\frac{8}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设a,b∈R,i是虚数单位,则“$a=\sqrt{3}$,b=1”是“$|{\frac{1+bi}{a+i}}|=\frac{{\sqrt{2}}}{2}$”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.双曲线$\frac{x^2}{2}-\frac{y^2}{4}=1$的顶点到其渐近线的距离等于$\frac{2\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在直角坐标系xOy中,已知直线l1:y=tanα•x(0≤a<π,α$≠\frac{π}{2}$),抛物线C:$\left\{\begin{array}{l}{x={t}^{2}}\\{y=-2t}\end{array}\right.$(t为参数).以原点O为极点,x轴的非负半轴为极轴建立极坐标系
(Ⅰ)求直线l1和抛物线C的极坐标方程;
(Ⅱ)若直线l1和抛物线C相交于点A(异于原点O),过原点作与l1垂直的直线l2,l2和抛物线C相交于点B(异于原点O),求△OAB的面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.设函数f(x)=1n(1+e-2x),则f′(0)=-1.

查看答案和解析>>

同步练习册答案