| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |
分析 $|{\frac{1+bi}{a+i}}|=\frac{{\sqrt{2}}}{2}$,可得$\frac{\sqrt{1+{b}^{2}}}{\sqrt{{a}^{2}+1}}$=$\frac{\sqrt{2}}{2}$,化为:a2-2b2=1,而$a=\sqrt{3}$,b=1满足上式,即可判断出结论.
解答 解:$|{\frac{1+bi}{a+i}}|=\frac{{\sqrt{2}}}{2}$,可得$\frac{\sqrt{1+{b}^{2}}}{\sqrt{{a}^{2}+1}}$=$\frac{\sqrt{2}}{2}$,化为:a2-2b2=1,
而$a=\sqrt{3}$,b=1满足上式,反之不成立.
∴“$a=\sqrt{3}$,b=1”是“$|{\frac{1+bi}{a+i}}|=\frac{{\sqrt{2}}}{2}$”的充分不必要条件.
故选:A.
点评 本题考查了模的计算公式、复数的运算法则、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{\sqrt{5}}}{2}$或$\sqrt{5}$ | B. | $\frac{{\sqrt{5}}}{2}$或$\frac{{3\sqrt{5}}}{2}$ | C. | $\frac{{\sqrt{5}}}{2}$ | D. | $\sqrt{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 过四面体各面的垂心分别与各面垂直的直线交点为四面体外接球球心 | |
| B. | 过四面体各面的内心分别与各面垂直的直线交点为四面体外接球球心 | |
| C. | 过四面体各面的重心分别与各面垂直的直线交点为四面体外接球球心 | |
| D. | 过四面体各面的外心分别与各面垂直的直线交点为四面体外接球球心 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -2 | B. | $-\frac{1}{3}$ | C. | $\frac{1}{2}$ | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com