精英家教网 > 高中数学 > 题目详情
18.已知关于x的不等式ax2-3x+2≤0的解集为{x|1≤x≤b}.
(1)求实数a,b的值;
(2)解关于x的不等式:$\frac{x+3}{ax-b}$>0.

分析 (1)由题意知1,b为关于x的方程ax2-3x+2=0的两根,由韦达定理可得方程组,解出即可;
(2)将a,b的值代入不等式,求出不等式的解集即可.

解答 解:(1)由题意知1,b为关于x的方程ax2-3x+2=0的两根,
则 $\left\{\begin{array}{l}{b=\frac{2}{a}}\\{1+b=\frac{3}{a}}\end{array}\right.$,∴a=1,b=2.
(2)由(1)$\frac{x+3}{ax-b}$>0,
即$\frac{x+3}{x-2}$>0,解得:x>2或x<-3,
故不等式的解集是{x|x>2或x<-3}.

点评 该题考查一元二次不等式的解法,属基础题,深刻理解“三个二次”间的关系是解题关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.设函数f(x)是定义在R上的以5为周期的奇函数,若$f(2)>1,f(3)=\frac{{{a^2}+a+3}}{a-3}$,则a的取值范围是(-∞,-2)∪(0,3).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设a,b∈R,i是虚数单位,则“$a=\sqrt{3}$,b=1”是“$|{\frac{1+bi}{a+i}}|=\frac{{\sqrt{2}}}{2}$”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.当x>1时,不等式x+$\frac{1}{x-1}$≥a恒成立,则实数a的取值范围是(-∞,3].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在直角坐标系xOy中,已知直线l1:y=tanα•x(0≤a<π,α$≠\frac{π}{2}$),抛物线C:$\left\{\begin{array}{l}{x={t}^{2}}\\{y=-2t}\end{array}\right.$(t为参数).以原点O为极点,x轴的非负半轴为极轴建立极坐标系
(Ⅰ)求直线l1和抛物线C的极坐标方程;
(Ⅱ)若直线l1和抛物线C相交于点A(异于原点O),过原点作与l1垂直的直线l2,l2和抛物线C相交于点B(异于原点O),求△OAB的面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=exsinx.
(1)求函数f(x)的单调区间;
(2)如果对于任意的$x∈[0,\frac{π}{2}]$,f(x)≥kx恒成立,求实数k的取值范围;
(3)设函数F(x)=f(x)+ex•cosx,$x∈[-\frac{2015π}{2},\frac{2017π}{2}]$.过点$M(\frac{π-1}{2},0)$作函数F(x)的图象的所有切线,令各切点的横坐标构成数列{xn},求数列{xn}的所有项之和S的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)=xlnx+3x-2,射线l:y=kx-k(x≥1).若射线l恒在函数y=f(x)图象的下方,则整数k的最大值为(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,已知⊙O1、⊙O2的半径分别为r1、r2,⊙O2经过点O1,且两圆相交于点A、B,C为⊙O2上的点,连接AC交⊙O1于点D,再连接BC、BD、AO1、AO2、O1O2有如下四个结论:①∠BDC=∠AO1O2;②$\frac{BD}{BC}$=$\frac{{r}_{1}}{{r}_{2}}$③AD=DC  ④BC=DC,其中正确结论的序号为①②④.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.复数${(\frac{1-i}{{\sqrt{2}}})^2}=a+bi(a,b∈R,i$是虚数单位),则a的值为(  )
A.0B.1C.2D.-1

查看答案和解析>>

同步练习册答案