精英家教网 > 高中数学 > 题目详情
6.当x>1时,不等式x+$\frac{1}{x-1}$≥a恒成立,则实数a的取值范围是(-∞,3].

分析 依题意知,a≤(x+$\frac{1}{x-1}$)min(x>1),利用基本不等式可求得x+$\frac{1}{x-1}$=(x-1)+$\frac{1}{x-1}$+1≥2$\sqrt{(x-1)•\frac{1}{x-1}}$+1=3,从而可得实数a的取值范围.

解答 解:因为当x>1时,不等式x+$\frac{1}{x-1}$≥a恒成立,
所以,a≤(x+$\frac{1}{x-1}$)min(x>1),
因为x>1时,x-1>0,
所以x+$\frac{1}{x-1}$=(x-1)+$\frac{1}{x-1}$+1≥2$\sqrt{(x-1)•\frac{1}{x-1}}$+1=3(当且仅当x-1=$\frac{1}{x-1}$,即x=2时取“=”),
所以,(x+$\frac{1}{x-1}$)min=3,
故a≤3,
故答案为:(-∞,3].

点评 本题考查函数恒成立问题,考查等价转化思想与基本不等式的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.$\int_{-1}^1{(xcosx+\root{3}{x^2})dx}$的值为(  )
A.$\frac{3}{4}$B.$\frac{3}{5}$C.$\frac{5}{4}$D.$\frac{6}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.类比平面内三角形“三边垂直平分线的交点是三角形外接圆圆心”的性质,可推知四面体的下列性质(  )
A.过四面体各面的垂心分别与各面垂直的直线交点为四面体外接球球心
B.过四面体各面的内心分别与各面垂直的直线交点为四面体外接球球心
C.过四面体各面的重心分别与各面垂直的直线交点为四面体外接球球心
D.过四面体各面的外心分别与各面垂直的直线交点为四面体外接球球心

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知数列{an}满足a1=3,an+1an+an+1-an+1=0,n∈N*,则a2016=(  )
A.-2B.$-\frac{1}{3}$C.$\frac{1}{2}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若函数f(x)=$\sqrt{4x-3}$,则f(x)的导函数f′(x)=$\frac{{2\sqrt{4x-3}}}{4x-3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.己知图1中,四边形ABCD是等腰梯形,AB∥CD,EF∥CD,O、Q分别为线段AB,CD的中点,OQ与EF的交点为P,OP=1,PQ=2,现将梯形ABCD沿EF折起,使得OQ=$\sqrt{3}$,连结AD,BC,得一几何体如图2示.

(I)证明:平面ABCD⊥平面ABFE;
(II)若图1中.∠A=45°,CD=2,求平面ADE与平面BCF所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知关于x的不等式ax2-3x+2≤0的解集为{x|1≤x≤b}.
(1)求实数a,b的值;
(2)解关于x的不等式:$\frac{x+3}{ax-b}$>0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.函数y=tanx-1的定义域为$\left\{{x\left|{x≠\frac{π}{2}+kπ,k∈z}\right.}\right\}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知复数z满足(3+4i)z=25,则z对应的点在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

同步练习册答案