精英家教网 > 高中数学 > 题目详情
8.设函数f(x)是定义在R上的以5为周期的奇函数,若$f(2)>1,f(3)=\frac{{{a^2}+a+3}}{a-3}$,则a的取值范围是(-∞,-2)∪(0,3).

分析 根据函数是以5为周期的奇函数,得f(2)=f(-3),结合函数为奇函数,得f(-3)=-f(3)由此结合f(2)>1建立关于a的不等式,解之可得a的取值范围.

解答 解:∵函数f(x)以5为周期,∴f(2)=f(-3),
又∵f(3)=$\frac{{a}^{2}+a+3}{a-3}$,函数是奇函数
∴f(-3)=-f(3)=-$\frac{{a}^{2}+a+3}{a-3}$,
因此,f(2)=-$\frac{{a}^{2}+a+3}{a-3}$>1,解之得0<a<3或a<-2
故答案为:(-∞,-2)∪(0,3).

点评 本题在已知函数为奇函数且是周期函数的情况下,解关于a的不等式,考查了函数的奇偶性和周期性,以及不等式的解法等知识,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.某疾病研究所想知道吸烟与患肺病是否有关,于是随机抽取11000名成年人调查是否抽烟及是否患有肺病得到2×2列联表,经计算得K2=5.231,已知在假设吸烟与患肺病无关的前提条件下,P(K2≥3.841)=0.05,P(K2≥6.635)=0.01,则该研究所可以(  )
A.有95%以上的把握认为“吸烟与患肺病有关”
B.有95%以上的把握认为“吸烟与患肺病无关”
C.有99%以上的把握认为“吸烟与患肺病有关”
D.有99%以上的把握认为“吸烟与患肺病无关”

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知集合A=N,B={x∈R|z=3+xi,且|z|=5}(i为虚数单位),则A∩B=(  )
A.4B.-4C.{4}D.{-4}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.$\int_{-1}^1{(xcosx+\root{3}{x^2})dx}$的值为(  )
A.$\frac{3}{4}$B.$\frac{3}{5}$C.$\frac{5}{4}$D.$\frac{6}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在等差数列{an}中,前n项和为Sn,$\frac{S_2}{S_4}=\frac{1}{3}$,则$\frac{S_4}{S_8}$等于(  )
A.$\frac{3}{10}$B.$\frac{1}{8}$C.$\frac{1}{9}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知不等式|x-1|<|x|+a,其中a∈R
(1)当a=1时,求不等式|x-1|<|x|+a的解集;
(2)若不等式|x-1|<|x|+a的解集不是空集,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知F为双曲线C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的右焦点,l1,l2为C的两条渐近线,点A在l1上,且FA⊥l1,点B在l2上,且FB∥l1,若|FA|=$\frac{4}{5}$|FB|,则双曲线C的离心率为(  )
A.$\frac{{\sqrt{5}}}{2}$或$\sqrt{5}$B.$\frac{{\sqrt{5}}}{2}$或$\frac{{3\sqrt{5}}}{2}$C.$\frac{{\sqrt{5}}}{2}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.类比平面内三角形“三边垂直平分线的交点是三角形外接圆圆心”的性质,可推知四面体的下列性质(  )
A.过四面体各面的垂心分别与各面垂直的直线交点为四面体外接球球心
B.过四面体各面的内心分别与各面垂直的直线交点为四面体外接球球心
C.过四面体各面的重心分别与各面垂直的直线交点为四面体外接球球心
D.过四面体各面的外心分别与各面垂直的直线交点为四面体外接球球心

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知关于x的不等式ax2-3x+2≤0的解集为{x|1≤x≤b}.
(1)求实数a,b的值;
(2)解关于x的不等式:$\frac{x+3}{ax-b}$>0.

查看答案和解析>>

同步练习册答案