分析 (1)推导出AB⊥AB1,AB1⊥BD,从而AC⊥BD,进而BD⊥平面BDC,由此能证明平面AB1C⊥平面BDC1.
(2)分别以AB,AD,AB1x,y,z轴,建立空间直角坐标系,利用向量法能求出结果.
解答 证明:(1)设AB=$\sqrt{3}$,AA1=2,∠B1BA=30°,
△ABB1中,AB1=$\sqrt{3+4-2×\sqrt{3}×2×cos30°}$=1,
∴$A{B}^{2}+A{{B}_{1}}^{2}$=BB12,∴AB⊥AB1,
∵面AA1B1B⊥面ABCD,
∴AB1⊥平面ABCD,∴AB1⊥BD,
∵斜四棱柱ABCD-A1B1C1D1的底面是边长为$\sqrt{3}$的正方形,
∴AC⊥BD,
∵AC∩AB1=A,∴BD⊥平面BDC,
∵BD?平面ABCD,∴平面AB1C⊥平面BDC1.
解:(2)分别以AB,AD,AB1x,y,z轴,建立空间直角坐标系,
则A(0,0,0),A1(-$\sqrt{3},0,1$),B($\sqrt{3},0,0$),
D(0,$\sqrt{3}$,0),C1(0,$\sqrt{3}$,1),
设棱AA1存在一点M,使平面MBC1与平面BDC1所成锐二面角的余弦值为$\frac{1}{8}$,且$\frac{AM}{A{A}_{1}}$=a,
则M(-$\sqrt{3}a$,0,a),$\overrightarrow{BM}$=(-$\sqrt{3}a-\sqrt{3}$,0,a),
设平面MBC1的法向量$\overrightarrow{n}$=(x,y,z),
由$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{BM}=(-\sqrt{3}a-\sqrt{3})x+az=0}\\{\overrightarrow{n}•\overrightarrow{B{C}_{1}}=-\sqrt{3}x+\sqrt{3}y+z=0}\end{array}\right.$,取y=-1,得$\overrightarrow{n}$=(a,-1,$\sqrt{3}a+\sqrt{3}$),
∵AC⊥平面BDC1,C(1,1,0),
∴平面BDC1的法向量$\overrightarrow{m}$=$\overrightarrow{AC}$=(1,1,0),
∴|cos<$\overrightarrow{m},\overrightarrow{n}$>|=$\frac{|\overrightarrow{m}•\overrightarrow{n}|}{|\overrightarrow{m}|•|\overrightarrow{n}|}$=$\frac{|a-1|}{\sqrt{2}•\sqrt{{a}^{2}+1+3(a+1)^{2}}}$=$\frac{1}{8}$,
解得a=$\frac{1}{2}$.
点评 本题考查面面垂直的证明,考查二面角的余弦值的求法及应用,考查推理论证能力、运算求解能力、空间想象能力,考查化归与转化思想、数形结合思想,是中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{32π}{3}$ | B. | 4π | C. | 2π | D. | $\frac{4π}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $-\frac{{\sqrt{3}}}{2}$ | B. | $\frac{{\sqrt{3}}}{5}$ | C. | $\frac{{2\sqrt{3}}}{3}$ | D. | $2\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $({0,\sqrt{3}})$ | B. | (0,2) | C. | $({0,\sqrt{2}})$ | D. | (0,1) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3}{10}$ | B. | $\frac{1}{8}$ | C. | $\frac{1}{9}$ | D. | $\frac{1}{3}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com