精英家教网 > 高中数学 > 题目详情
19.若$\frac{2co{s}^{2}α+cos(\frac{π}{2}+2α)-1}{\sqrt{2}sin(2α+\frac{π}{4})}$=4,则tan(2α+$\frac{π}{4}$)=(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{1}{4}$D.$\frac{1}{5}$

分析 由条件利用三角函数的恒等变换求得an2α的值,再利用两角和的正切公式求得tan(2α+$\frac{π}{4}$)的值.

解答 解:若$\frac{2co{s}^{2}α+cos(\frac{π}{2}+2α)-1}{\sqrt{2}sin(2α+\frac{π}{4})}$=4=$\frac{cos2α-sin2α}{\sqrt{2}•(sin2α•\frac{\sqrt{2}}{2}+cos2α•\frac{\sqrt{2}}{2})}$=$\frac{1-tan2α}{tan2α+1}$,
∴tan2α=-$\frac{3}{5}$,
则tan(2α+$\frac{π}{4}$)=$\frac{tan2α+tan\frac{π}{4}}{1-tan2α•tan\frac{π}{4}}$=$\frac{-\frac{3}{5}+1}{1-(-\frac{3}{5})•1}$=$\frac{1}{4}$,
故选:C.

点评 本题主要考查三角函数的恒等变换,两角和的正切公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.已知一个简单几何的三视图如图所示,若该几何体的体积为24π+48,则该几何体的表面积为(  )
A.24π+48B.$24π+90+6\sqrt{41}$C.48π+48D.$24π+66+6\sqrt{41}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设A、B、C为锐角△ABC的三个内角,M=sinA+sinB+sinC,N=cosA+2cosB,则(  )
A.M<NB.M=NC.M>ND.M、N大小不确定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.某旅行社为调查市民喜欢“人文景观”景点是否与年龄有关,随机抽取了55名市民,得到数据如下表:
喜欢不喜欢总计
大于40岁20525
20岁至40岁102030
总计302555
(1)判断是否在犯错误的概率不超过0.5%的前提下认为喜欢“人文景观”景点与年龄有关?
(2)用分层抽样的方法从喜欢“人文景观”景点的市民中随机抽取6人作进一步调查,将这6位市民作为一个样本,从中任选2人,求恰有1位“大于40岁”的市民和1位“20岁至40岁”的市民的概率.
参考公式:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d为样本容量.
参考数据:
P(K2≥k00.150.100.050.0250.0100.0050.001
k02.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设a=($\frac{7}{9}$)${\;}^{-\frac{1}{4}}$,b=($\frac{9}{7}$)${\;}^{\frac{1}{5}}$,c=log2$\frac{9}{7}$,则a,b,c的大小顺序是(  )
A.b<a<cB.c<a<bC.c<b<aD.b<c<a

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在等差数列{an}中,a10=$\frac{1}{2}$a14-6,则数列{an}的前11项和等于(  )
A.132B.66C.-132D.-66

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知实数x,y满足$\left\{\begin{array}{l}{x-2y+1≥0}\\{x≤2}\\{x+y-1≥0}\end{array}\right.$,则2x-2y+1的最大值是7.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知实数x,y满足$\left\{\begin{array}{l}2x-y-5≥0\\ 2x+y-3≥0\\ y≤x\end{array}\right.$,则z=-3x-y的最大值为(  )
A.-19B.-7C.-5D.-4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知$f(x)=\frac{4x-t}{{{x^2}+1}}$的两个极值点为α,β,记A(α,f(α)),B(β,f(β))
(Ⅰ)若函数f(x)的零点为γ,证明:α+β=2γ.
(Ⅱ) 设点$C({\frac{t}{4}-m,0}),D({\frac{t}{4}+m,0})$,是否存在实数t,对任意m>0,四边形ACBD均为平行四边形.若存在,求出实数t;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案