精英家教网 > 高中数学 > 题目详情
10.设A、B、C为锐角△ABC的三个内角,M=sinA+sinB+sinC,N=cosA+2cosB,则(  )
A.M<NB.M=NC.M>ND.M、N大小不确定

分析 首先,根据锐角三角形的角的特点,A+B>90°C+B>90°A+C>90°,然后,利用诱导公式进行判断,得到sinA>cosB,sinB>cosC,sinC>cosA,最后,利用不等式的性质,从而得到相应的结论.

解答 解:∵△ABC为锐角三角形,
∴A+B>90°,
∴A>90°-B,
∴sinA>sin(90°-B)=cosB,即:sinA>cosB,
同理可得:sinB>cosC,sinC>cosA,
上面三式相加:sinA+sinB+sinC>cosA+cosB+cosC,
∴在锐角△ABC中,sinA+sinB+sinC>cosA+cosB+cosC,
∴M>N,
故选:C.

点评 本题综合考查三角形的性质、诱导公式及其运用等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.如图,四棱锥P-ABCD的底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点.
(Ⅰ)证明:PB⊥AC
(Ⅱ)求直线PB与平面BDE的夹角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.复数$\frac{1}{1+ai}$(a∈R)在复平面内对应的点在第一象限,则a的取值范围是(  )
A.a<0B.0<a<1C.a>1D.a<-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若如图的程序框图运行的结构为S=-$\frac{1}{2}$,则判断框①中可以填入的是(  )
A.i>4?B.i≥4?C.i>3?D.i≥3?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.如图,G,H,M,N分别是正三棱柱的顶点或所在棱的中点,则表示GH,MN是异面直线的图形的序号为(  )
A.①②B.③④C.①③D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知i是虚数单位,复数$z=\frac{{{{({1+i})}^2}+3({1-i})}}{2+i}$,若z2+az+b=1+i,求实数a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知关于x的不等式ax2+(1-a)x-1>0
(1)当a=2时,求不等式的解集.
(2)当a>-1时.求不等式的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若$\frac{2co{s}^{2}α+cos(\frac{π}{2}+2α)-1}{\sqrt{2}sin(2α+\frac{π}{4})}$=4,则tan(2α+$\frac{π}{4}$)=(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{1}{4}$D.$\frac{1}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.某地区打的士收费办法如下:不超过2公里收7元,超过2公里时,每车收燃油附加费1元,并且超过的里程每公里收2.6元(其他因素不考虑),计算收费标准的框图如图所示,则①处应填(  )
A.y=2.0x+2.2B.y=0.6x+2.8C.y=2.6x+2.0D.y=2.6x+2.8

查看答案和解析>>

同步练习册答案