精英家教网 > 高中数学 > 题目详情
1.复数$\frac{1}{1+ai}$(a∈R)在复平面内对应的点在第一象限,则a的取值范围是(  )
A.a<0B.0<a<1C.a>1D.a<-1

分析 利用复数的运算法则、几何意义即可得出.

解答 解:复数z=$\frac{1}{1+ai}$=$\frac{1-ai}{1+{a}^{2}}$在复平面内对应的点在第一象限,
∴-a>0,解得a<0.
故选:A.

点评 本题考查了复数的运算法则、几何意义,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.设数列{an}的前n项和为Sn,a1=1,an+1=3Sn+1,n∈N*
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=n+an,求Tn=b1+b2+…+bn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=x3-x2-x,
(1)曲线y=f(x)在点(0,f(0))处的切线方程
(2)求函数y=f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知一个简单几何的三视图如图所示,若该几何体的体积为24π+48,则该几何体的表面积为(  )
A.24π+48B.$24π+90+6\sqrt{41}$C.48π+48D.$24π+66+6\sqrt{41}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若复数z满足i(z+1)=-3+2i,则z的虚部是3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设Sn为正项数列{an}的前n项和,a2=3,Sn+1(2Sn+1+n-4Sn)=2nSn,则a25等于(  )
A.3×223B.3×224C.223D.224

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知复数z1=2-i,z2=1+i,其中i为虚数单位,设复数z=$\frac{{z}_{1}}{{z}_{2}}$,若a-z为纯虚数,则实数a的值为(  )
A.$\frac{3}{2}$B.$\frac{1}{2}$C.-$\frac{3}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设A、B、C为锐角△ABC的三个内角,M=sinA+sinB+sinC,N=cosA+2cosB,则(  )
A.M<NB.M=NC.M>ND.M、N大小不确定

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知实数x,y满足$\left\{\begin{array}{l}{x-2y+1≥0}\\{x≤2}\\{x+y-1≥0}\end{array}\right.$,则2x-2y+1的最大值是7.

查看答案和解析>>

同步练习册答案