分析 利用复数代数形式的乘除运算化简求得z,代入z2+az+b=1+i,再由复数相等的条件求得a,b的值.
解答 解:$z=\frac{{{{({1+i})}^2}+3({1-i})}}{2+i}$=$\frac{{2i+3({1-i})}}{2+i}$=$\frac{3-i}{2+i}$=$\frac{{({3-i})({2-i})}}{{({2+i})({2-i})}}$=$\frac{5-5i}{5}=1-i$.
将z=1-i代入z2+az+b=1+i,得(1-i)2+a(1-i)+b=1+i,
即(a+b)-(a+2)i=1+i.
由复数相等的定义可知$\left\{\begin{array}{l}a+b=1\\-({a+2})=1\end{array}\right.$,
∴$\left\{\begin{array}{l}a=-3\\ b=4\end{array}\right.$.
点评 本题考查复数代数形式的乘除运算,考查复数相等的条件,是基础题.
科目:高中数学 来源: 题型:选择题
| A. | 3×223 | B. | 3×224 | C. | 223 | D. | 224 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | M<N | B. | M=N | C. | M>N | D. | M、N大小不确定 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 喜欢 | 不喜欢 | 总计 | |
| 大于40岁 | 20 | 5 | 25 |
| 20岁至40岁 | 10 | 20 | 30 |
| 总计 | 30 | 25 | 55 |
| P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 132 | B. | 66 | C. | -132 | D. | -66 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充分必要条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com