精英家教网 > 高中数学 > 题目详情
7.某旅行社为调查市民喜欢“人文景观”景点是否与年龄有关,随机抽取了55名市民,得到数据如下表:
喜欢不喜欢总计
大于40岁20525
20岁至40岁102030
总计302555
(1)判断是否在犯错误的概率不超过0.5%的前提下认为喜欢“人文景观”景点与年龄有关?
(2)用分层抽样的方法从喜欢“人文景观”景点的市民中随机抽取6人作进一步调查,将这6位市民作为一个样本,从中任选2人,求恰有1位“大于40岁”的市民和1位“20岁至40岁”的市民的概率.
参考公式:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d为样本容量.
参考数据:
P(K2≥k00.150.100.050.0250.0100.0050.001
k02.0722.7063.8415.0246.6357.87910.828

分析 (1)计算K2的值,与临界值比较,即可得到结论;
(2)确定样本中有4个“大于40岁”的市民,2个“20岁至40岁”的市民,利用列举法确定基本事件,即可求得结论.

解答 解:(1)${K^2}=\frac{{55{{(20×20-10×5)}^2}}}{30×25×25×30}$≈11.978>7.879,
所以在犯错误的概率不超过0.5%的前提下认为喜欢“人文景观”景点与年龄有关  (5分)
(2)设所抽样本中有m个“大于40岁”市民,则$\frac{m}{20}$=$\frac{6}{30}$,得m=4,所以样本中有4个“大于40岁”的市民,2个“20岁至40岁”的市民,分别记作B1,B2,B3,B4,C1,C2
从中任选2人的基本事件有(B1,B2),(B1,B3),(B1,B4),(B1,C1),(B1,C2),(B2,B3),(B2,B4),(B2,C1),(B2,C2),(B3,B4),(B3,C1),(B3,C2),(B4,C1),(B4,C2),(C1,C2),共15个.(10分)
其中恰有1名“大于40岁”和1名“20岁至40岁”的市民的事件有(B1,C1),(B1,C2),(B2,C1),(B2,C2),(B3,C1),(B3,C2),(B4,C1),(B4,C2),共8个.
所以恰有1名“大于40岁”的市民和1名“20岁至40岁”的市民的概率为P=$\frac{8}{15}$.(12分)

点评 本题考查独立性检验,考查概率知识的运用,考查学生的计算能力,利用列举法确定基本事件是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.已知$\overrightarrow{a}$、$\overrightarrow{b}$为单位向量,|$\overrightarrow{a}+\overrightarrow{b}$|=$\sqrt{2}$|$\overrightarrow{a}-\overrightarrow{b}$|,则$\overrightarrow{a}$在$\overrightarrow{a}+\overrightarrow{b}$的投影为(  )
A.$\frac{1}{3}$B.-$\frac{2\sqrt{6}}{3}$C.$\frac{2\sqrt{2}}{3}$D.$\frac{\sqrt{6}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若如图的程序框图运行的结构为S=-$\frac{1}{2}$,则判断框①中可以填入的是(  )
A.i>4?B.i≥4?C.i>3?D.i≥3?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知i是虚数单位,复数$z=\frac{{{{({1+i})}^2}+3({1-i})}}{2+i}$,若z2+az+b=1+i,求实数a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知关于x的不等式ax2+(1-a)x-1>0
(1)当a=2时,求不等式的解集.
(2)当a>-1时.求不等式的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设集合A={x|y=lg(x-2)},集合B={x|y=$\sqrt{3-x}$},则A∩B=(  )
A.{x|x<2}B.{x|x≤2}C.{x|2<x≤3}D.{x|2≤x<3}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若$\frac{2co{s}^{2}α+cos(\frac{π}{2}+2α)-1}{\sqrt{2}sin(2α+\frac{π}{4})}$=4,则tan(2α+$\frac{π}{4}$)=(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{1}{4}$D.$\frac{1}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知f(x)是偶函数,且f(x)在[0,+∞)上是增函数,若f(ax+1)≤f(x-2)在$x∈[{\frac{1}{2}\;,\;1}]$上恒成立,则实数a的取值范围是(  )
A.[-2,1]B.[-2,0]C.[-1,1]D.[-1,0]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设函数f(x)=sin(ωx+ϕ)(ω>0),则f(x)的奇偶性(  )
A.与ω有关,且与ϕ有关B.与ω有关,但与ϕ无关
C.与ω无关,且与ϕ无关D.与ω无关,但与ϕ有关

查看答案和解析>>

同步练习册答案