精英家教网 > 高中数学 > 题目详情
已知y=f(x)+2x为奇函数,且g(x)=f(x)+1.若f(2)=2,则g(-2)=
 
考点:函数奇偶性的性质
专题:函数的性质及应用
分析:根据奇函数得出f(2)+22=-[f(-2)+2-2],即f(-2)=-
25
4
,即可求解g(-2).
解答: 解:∵y=f(x)+2x为奇函数,
∴f(2)+22=-[f(-2)+2-2],
得f(-2)=-
25
4

∴g(-2)=f(-2)+1=-
21
4

故答案为:-
21
4
点评:本题考查了利用函数的奇偶性求解函数值,整体思想的运用,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)上点到两焦点的距离和为
2
3
,短轴长为
1
2
,直线l与椭圆C交于M、N两点.
(Ⅰ)求椭圆C方程;
(Ⅱ)若直线MN与圆O:x2+y2=
1
25
相切,证明:∠MON为定值;
(Ⅲ)在(Ⅱ)的条件下,求|OM|•|ON|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

随机抽取100名年龄在[10,20),[20,30),…[50,60)年龄段的市民进行问卷调查,由此得到样本的频率分布直方图如图所示,从不小于40岁的人中按年龄段分层抽样的方法随机抽取8人,则在[50,60)年龄段抽取的人数为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

求函数f(x)=log
1
2
(-x2-2x)
的定义域、值域及单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}是等差数列,首项为a1,公差为d,前n项和为Sn,若数列{an}中任意不同两项之和仍是该数列中的一项,则称该数列为“F数列”.
(1)若a1=4,d=2,判断该数列是否为“F数列”.
(2)若a1,d∈N,是否存在这样的“F数列”,使S10≤70?若存在,求出所有满足条件的数列的通项公式;若不存在,请说明理由.
(3)试问:数列{an}为“F数列”的充要条件是什么?给出你的结论并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知锐角△ABC的三边a,b,c分别为角A,B,C的对边,且(b2+c2-a2)tanA=
3
bc,则角A的大小
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实数m,n满足m2+n2=2,则点P(m+n,m-n)的轨迹方程是(  )
A、x2+y2=1
B、x2-y2=1
C、x2+y2=2
D、x2+y2=4

查看答案和解析>>

科目:高中数学 来源: 题型:

若x+2y=4,则2x+4y的最小值是(  )
A、4
B、8
C、2
2
D、4
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(2,1),试写出一个与向量
a
垂直的单位向量
b
=
 

查看答案和解析>>

同步练习册答案