精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
1
3
x3-ax2+4,且x=2是函数f(x)的一个极小值点.
(1)求实数a的值;
(2)求f(x)在区间[-1,3]上的最大值和最小值,并指出相应的x取值.
考点:利用导数求闭区间上函数的最值,利用导数研究函数的极值
专题:导数的综合应用
分析:(1)由已知条件得f′(x)=x2-2ax,f′(2)=0,由此能求出a=1.
(2)由f′(x)=x2-2x=x(x-2),令f′(x)=0,得x=0或x=2,列表讨论,能求出f(x)在区间[-1,3]上的最大值和最小值,并能指出相应的x取值.
解答: 解:(1)∵f(x)=
1
3
x3-ax2+4,∴f′(x)=x2-2ax,
∵x=2是函数f(x)的一个极小值点,
∴f′(2)=0,即4-4a=0,解得a=1,
经检验,当a=1时,x=2是函数f(x)的一个极小值点,
∴a=1.
(2)由(1)知f(x)=
1
3
x3-x2+4

∴f′(x)=x2-2x=x(x-2),
令f′(x)=0,得x=0或x=2,
当x在[-1,3]上变化时,f′(x),f(x)的变化情况如下:
 x-1 (-1,0) 0(0,2) 2 (2,3) 3
 f′(x) + 0- 0+ 
 f(x) 
8
3
 4 
8
3
↑  4
当x=-1或x=-2时,f(x)有最小值
8
3

当x=0或x=3时,f(x)有最大值得.
点评:本题主要考查函数与导数等基础知识,考查运算求解能力、推理论证能力,考查分类与整合思想、数形结合思想、函数与方程思想、化归与转化思想等.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=xlnx,g(x)=ax2-x(a∈R),
(1)求f(x)的单调区间和极值点;
(2)求使f(x)≤g(x)恒成立的实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax+x2-xlna-b(a,b∈R,a>0,a≠1).
(1)当a>1时,试判断函数f(x)在(0,+∞)上的单调性;
(2)当b=4,a=e(e是自然对数的底数,e=2.71828…)时,求整数k的值,使得函数f(x)在区间(k,k+1)上存在零点;
(3)当b=0时,若存在x1,x2∈[-1,1],使得|f(x1)-f(x2)|≥e-1,试求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(x+1)ekx,(k为常数,k≠0).
(Ⅰ)当k=1时,求函数f(x)的极值;
(Ⅱ)求函数f(x)的单调区间;
(Ⅲ)若函数f(x)在区间(0,1)上是单调增函数,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知公差不为零的等差数列{an}的前3项和S3=9,且a1、a2、a5成等比数列.
(1)求数列{an}的通项公式及前n项的和Sn
(2)设Tn为数列{
1
anan+1
}的前n项和,证明:
1
3
≤Tn
1
2

(3)对(2)问中的Tn,若Tn≤λan+1对一切n∈N*恒成立,求实数λ的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
ax+b
x2+1
(a>0)
(Ⅰ)求证:f(x)必有两个极值点,一个是极大值点,-个是极小值点;
(Ⅱ)设f(x)的极小值点为α,极大值点为β,f(α)=-1,f(β)=1,求a、b的值;
(Ⅲ)在(Ⅱ)的条件下,设g(x)=f(ex),若对于任意实数x,g(x)≤
2
2+mx2
恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

a2+4b2=5,求
1
a2
+
1
b2
的最值为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lnx+x2-ax(a为常数).
(1)若x=1是函数f(x)的一个极值点,求a的值;
(2)当0<a≤2时,试判断f(x)的单调性;
(3)若对任意的a∈(1,2),x0∈[1,2],使不等式f(x0)>mlna恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

若抛物线y=
1
2
x2+1在点(2,3)处的切线与圆x2+(y-m)2=5(m>0)相切,则m的值为
 

查看答案和解析>>

同步练习册答案