精英家教网 > 高中数学 > 题目详情

已知函数,当时,.
(1)若函数在区间上存在极值点,求实数a的取值范围;
(2)如果当时,不等式恒成立,求实数k的取值范围;
(3)试证明:.

(1);(2);(3)证明过程详见解析.

解析试题分析:本题主要考查导数的运算、利用导数研究函数的单调性、利用导数求函数的极值与最值等数学知识,考查学生分析问题解决问题的能力、转化能力和计算能力.第一问,先对求导,利用判断函数的单调区间,利用单调性的变化,判断有无极值;第二问,将已知的恒成立问题转化为,即转化为求函数的最小值问题,利用导数判断的单调性,求出最小值;第三问,利用第二问的结论进行变形,得到类似所证结论的表达式,通过式子的累加得到所证结论.
试题解析:(1)当x>0时,,有

所以在(0,1)上单调递增,在上单调递减,
函数处取得唯一的极值.由题意,且,解得
所求实数的取值范围为.              4分
(2)当时,   5分
,由题意,上恒成立
   6分
,则,当且仅当时取等号.
所以上单调递增,.   8分
因此,   上单调递增,
所以.所求实数的取值范围为      9分
(3)由(2),当时,即,即.   10分
从而.             12分
,得
 将以上不等式两端分别相加,得
          14分
考点:1.利用导数研究函数的单调性;2.利用导数求函数的极值和最值;3.恒成立问题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数,().
(1)若有最值,求实数的取值范围;
(2)当时,若存在,使得曲线处的切线互相平行,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)当时,求曲线在点处的切线方程;
(2)当时,若在区间上的最小值为-2,求的取值范围;
(3)若对任意,且恒成立,求的取值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数处切线为.
(1)求的解析式;
(2)设表示直线的斜率,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若处取得极值,求实数的值;
(2)求函数的单调区间;
(3)若上没有零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数.
(1)若函数在区间(-2,0)内恰有两个零点,求a的取值范围;
(2)当a=1时,求函数在区间[t,t+3]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知处取得极值,且在点处的切线斜率为.
⑴求的单调增区间;
⑵若关于的方程在区间上恰有两个不相等的实数根,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求的最小值;
(2)当函数自变量的取值区间与对应函数值的取值区间相同时,这样的区间称为函数的保值区间.设,试问函数上是否存在保值区间?若存在,请求出一个保值区间;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在F1赛车中,赛车位移与比赛时间t存在函数关系s=10t+5t2(s的单位为m,t的单位为s).求:
(1)t=20s,Δt=0.1s时的Δs与
(2)t=20s时的瞬时速度.

查看答案和解析>>

同步练习册答案