精英家教网 > 高中数学 > 题目详情
1.已知$tanα=-\frac{3}{4}$,且α是第四象限角.求sinα+cosα的值.

分析 根据同角三角函数的基本关系、以及三角函数在各个象限中的符号,求得sinα和cosα的值,可得sinα+cosα的值.

解答 解:∵$tanα=-\frac{3}{4}$=$\frac{sinα}{cosα}$,sin2α+cos2α=1,α是第四象限角,
∴sinα=-$\frac{3}{5}$,cosα=$\frac{4}{5}$,
∴sinα+cosα=$\frac{1}{5}$.

点评 本题主要考查同角三角函数的基本关系、以及三角函数在各个象限中的符号,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源:2017届湖北省协作校高三联考一数学(理)试卷(解析版) 题型:选择题

的大小关系为( )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源:2016-2017学年重庆市高一上学期第一次月考数学试卷(解析版) 题型:选择题

函数的定义域为,则实数的取值范围是( )

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在如图所示的几何体中.EA⊥平面ABC,DB⊥平面ABC,AC⊥BC,且AC=BC=BD=2AE=2,M是AB的中点.
(Ⅰ)求证:CM⊥EM;
(Ⅱ)求多面体ABCDE的体积
(Ⅲ)求直线DE与平面EMC所成角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数f(x)=2sin(2x+ϕ)满足f(a+x)=f(a-x),则$f(a+\frac{π}{4})$=(  )
A.0B.-2C.2D.不确定

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知向量$\overrightarrow{α}$,$\overrightarrow{β}$,$\overrightarrow{γ}$ 满足|$\overrightarrow{α}$|=1,$\overrightarrow{α}$⊥($\overrightarrow{α}$-2$\overrightarrow{β}$),($\overrightarrow{α}$-$\overrightarrow{γ}$)⊥($\overrightarrow{β}$-$\overrightarrow{γ}$),若|$\overrightarrow{β}$|=$\frac{\sqrt{17}}{2}$,|$\overrightarrow{γ}$|的最大值和最小值分别为m,n,则m+n等于(  )
A.$\frac{3}{2}$B.2C.$\frac{5}{2}$D.$\frac{{\sqrt{15}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若函数y=f(x)同时具有下列三个性质:(1)最小正周期为π;(2)在$x=\frac{π}{3}$时取得最大值1;(3)在区间$[{-\frac{π}{6},\frac{π}{3}}]$上是增函数.则y=f(x)的解析式可以是(  )
A.$y=sin({\frac{x}{2}+\frac{π}{6}})$B.$y=cos({2x+\frac{π}{3}})$C.$y=sin({2x-\frac{π}{6}})$D.$y=cos({2x-\frac{π}{6}})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若sinα+sinβ+sinγ=0,cosα+cosβ+cosγ=0,且0≤α<β<γ<2π,则β-α=(  )
A.$\frac{4π}{3}或\frac{2π}{3}$B.$\frac{2π}{3}$C.$\frac{4π}{3}$D.以上答案都不对

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.函数f(x)=log2(x2-2x-3)(a>0,a≠1)的定义域为{x|x>3或x<-1}.

查看答案和解析>>

同步练习册答案