精英家教网 > 高中数学 > 题目详情
(本小题满分12分)已知函数
(1)若对一切实数x恒成立,求实数a的取值范围。
(2)求在区间上的最小值的表达式。
(1)
(2)

试题分析:解:⑴ 由恒成立,即恒成立

∴实数a的取值范围为    5分
⑵ ∵
1°:当时, 
2°:当时,   10分
    12分
点评:解决的关键是利用函数的最值来得到参数的范围,考查了等价转化思想的运用,属于基础题。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本题满分13分)设函数满足:都有,且时,取极小值
(1)的解析式;
(2)当时,证明:函数图象上任意两点处的切线不可能互相垂直;
(3)设, 当时,求函数的最小值,并指出当取最小值时相应的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数.
(Ⅰ)讨论函数的单调性;
(Ⅱ)设,证明:对任意.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(1)已知,求函数的最大值和最小值;
(2)要使函数上f (x)恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知定义在R上的函数满足:对任意x∈R,都有成立,且当时,(其中的导数).设,则a,b,c三者的大小关系是(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知定义在的函数,对任意的,都有,且当时,.
(1)证明:当时,
(2)判断函数的单调性并加以证明;
(3)如果对任意的恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数上的奇函数,且当,函数 若>,则实数的取值范围是
A.B.
C.(1,2)D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
已知函数f (x)=ex,g(x)=lnx,h(x)=kx+b.
(1)当b=0时,若对x∈(0,+∞)均有f (x)≥h(x)≥g(x)成立,求实数k的取值范围;
(2)设h(x)的图象为函数f (x)和g(x)图象的公共切线,切点分别为(x1, f (x1))和(x2, g(x2)),其中x1>0.
①求证:x1>1>x2
②若当x≥x1时,关于x的不等式ax2-x+xe+1≤0恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

定义在R上的任意函数f (x)都可以表示成一个奇函数g (x)和一个偶函数h (x)之和,如果f (x)=lg(10x+1),x∈R.那么
A.g (x)=x,h (x)=lg(10x+10-x+1)
B.g (x)=,h (x)=
C.g (x)=,h (x)=lg(10x+1)-
D.g (x)=-,h (x)=

查看答案和解析>>

同步练习册答案