精英家教网 > 高中数学 > 题目详情
已知函数.
(Ⅰ)讨论函数的单调性;
(Ⅱ)设,证明:对任意.
(Ⅰ)分类讨论得到单调性      (Ⅱ)构造函数用导数的方法证明.      

试题分析:(Ⅰ) f(x)的定义域为(0,+),  
当a≥0时,>0,故f(x)在(0,+)单调增加;
当a≤-1时,<0, 故f(x)在(0,+)单调减少;
当-1<a<0时,令=0,解得x=.当x∈(0, )时, >0;
x∈(,+)时,<0, 故f(x)在(0, )单调增加,在(,+)单调减少   
(Ⅱ)不妨设x1≥x2.由于a≤-2,故f(x)在(0,+)单调减少.
所以等价于≥4x1-4x2,
即f(x2)+ 4x2≥f(x1)+ 4x1.         
令g(x)=f(x)+4x,则+4=.               
于是≤0.
从而g(x)在(0,+)单调减少,故g(x1) ≤g(x2),即 f(x1)+ 4x1≤f(x2)+ 4x2
故对任意x1,x2∈(0,+) ,.
点评:本题考查利用导数研究函数的单调性及函数的最值问题,考查分类讨论思想,考查学生综合运用知识分析问题解决问题的能力,属难题.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

函数y=(
1
2
)x
,当定义域[1,+∞)时,值域为(  )
A.(0,
1
2
]
B.[
1
2
,+∞)
C.(-∞,
1
2
]
D.以上都不对

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

定义在R上的函数是增函数,且函数的图像关于(3,0)成中心对称,若满足不等式,当时,则的取值范围为____.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

 
(1)当,求的取值范围;
(2)若对任意恒成立,求实数的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设S,T是R的两个非空子集,如果存在一个从S到T的函数满足:
(i)(ii)对任意
那么称这两个集合“保序同构”,现给出以下3对集合:



其中,“保序同构”的集合对的序号是_______.(写出“保序同构”的集合对的序号).

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设奇函数的定义域为R,最小正周期,若,则的取值范围是
A. B.
C.  D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某单位决定投资3200元建一仓库(长方体状),高度恒定,它的后墙利用旧墙,地面利用原地面均不花钱,正面用铁栅,每米长造价40元,两侧墙砌砖,每米长造价45元,屋顶每平方米造价20元.
(1)仓库面积的最大允许值是多少?
(2)为使面积达到最大而实际投入又不超过预算,正面铁栅应设计为多长?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)证明函数的图像关于点对称;
(2)若,求
(3)在(2)的条件下,若 为数列的前项和,若对一切都成立,试求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)已知函数
(1)若对一切实数x恒成立,求实数a的取值范围。
(2)求在区间上的最小值的表达式。

查看答案和解析>>

同步练习册答案